

POSTER PRESENTATION

Open Access

Coagulation disorders in subjects undergoing pump-driven veno-venous ECCO2-r for severe acute hypercapnic respiratory failure - a single center experience

U Harler*, GF Lehner, J Hasslacher, M Joannidis

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

Recent evidence suggests low-flow extracorporeal CO2 removal (ECCO2-R) systems as safe and promising adjunctive therapy to avoid endotracheal intubation and the related negative consequences in subjects with severe hypercapnic respiratory failure [1]. In high-flow extracorporeal membrane oxygenation systems heterogeneous coagulation disorders are a well-known complication. However, to date there is little evidence for the influence of pump-driven low-flow veno-venous ECCO2-R on the coagulation system.

Objectives

This study is a retrospective analysis of four subjects developing coagulation disorders with bleeding complications while undergoing ECCO2-R.

Methods

Four subjects treated with a pump-driven veno-venous ECCO2-R (system: iLA Activve®; membrane ventilator: Minilung®; Novalung GmbH, Talheim, Germany) for severe hypercapnic respiratory failure due to acute exacerbation of COPD were included in this study. Unfractionated heparin was used for anticoagulation with a target aPTT of 45-55 sec. Coagulation parameters i.e. hemoglobin, platelets, fibrinogen, antithrombin and D-DIMER were retrieved from the charts at treatment initiation and during the time range starting 72 hours before and ending at the clinical onset of the bleeding complication.

Results

Mean application time of ECCO2-R was 196.5 h (\pm 77.4) with an average blood flow of 1.1 l/min (\pm 0.2).

Table 1. Coagulation parameters

baseline*	-72h	-48h	-24h	day of bleeding
114.5 (± 24.3)	97.8 (± 11.8)	88.8 (± 16.9)	79 (± 14.5)	81.8 (± 14.1)
195.5 (± 125.5)	193.3 (± 136.0)	171 (± 122.5)	141.8 (± 122.1)	125.5 (± 100.2)
370 (± 97.4)	358.8 (± 133.9)	343.5 (± 136.3)	255.5 (± 136.2)	235.5 (± 142.9)
101 (± 20.9)	86 (± 25.7)	80.5 (± 21.6)	69.5 (± 23.7)	74 (± 14.5)
1170 (± 435.4)	5079 (± 6597)	7569 (± 11340)	11048 (± 16140)	12709 (± 15453)
90.8 (± 18.7)	91 (± 19.8)	86.8 (± 18.8)	81.8 (± 16.9)	82.5 (± 24.8)
38.8 (± 12.0)	39.8 (± 10.4)	46.8 (± 11.3)	49.5 (± 15.1)	36.8 (± 7.7)
0	207.8 (± 80.5)	259.7 (± 84.3)	150.1 (± 115.7)	78.33 (± 97.1)
	114.5 (± 24.3) 195.5 (± 125.5) 370 (± 97.4) 101 (± 20.9) 1170 (± 435.4) 90.8 (± 18.7) 38.8 (± 12.0)	114.5 (± 24.3) 97.8 (± 11.8) 195.5 (± 125.5) 193.3 (± 136.0) 370 (± 97.4) 358.8 (± 133.9) 101 (± 20.9) 86 (± 25.7) 1170 (± 435.4) 5079 (± 6597) 90.8 (± 18.7) 91 (± 19.8) 38.8 (± 12.0) 39.8 (± 10.4)	$114.5 (\pm 24.3)$ $97.8 (\pm 11.8)$ $88.8 (\pm 16.9)$ $195.5 (\pm 125.5)$ $193.3 (\pm 136.0)$ $171 (\pm 122.5)$ $370 (\pm 97.4)$ $358.8 (\pm 133.9)$ $343.5 (\pm 136.3)$ $101 (\pm 20.9)$ $86 (\pm 25.7)$ $80.5 (\pm 21.6)$ $1170 (\pm 435.4)$ $5079 (\pm 6597)$ $7569 (\pm 11340)$ $90.8 (\pm 18.7)$ $91 (\pm 19.8)$ $86.8 (\pm 18.8)$ $38.8 (\pm 12.0)$ $39.8 (\pm 10.4)$ $46.8 (\pm 11.3)$	$114.5 (\pm 24.3)$ $97.8 (\pm 11.8)$ $88.8 (\pm 16.9)$ $79 (\pm 14.5)$ $195.5 (\pm 125.5)$ $193.3 (\pm 136.0)$ $171 (\pm 122.5)$ $141.8 (\pm 122.1)$ $370 (\pm 97.4)$ $358.8 (\pm 133.9)$ $343.5 (\pm 136.3)$ $255.5 (\pm 136.2)$ $101 (\pm 20.9)$ $86 (\pm 25.7)$ $80.5 (\pm 21.6)$ $69.5 (\pm 23.7)$ $1170 (\pm 435.4)$ $5079 (\pm 6597)$ $7569 (\pm 11340)$ $11048 (\pm 16140)$ $90.8 (\pm 18.7)$ $91 (\pm 19.8)$ $86.8 (\pm 18.8)$ $81.8 (\pm 16.9)$ $38.8 (\pm 12.0)$ $39.8 (\pm 10.4)$ $46.8 (\pm 11.3)$ $49.5 (\pm 15.1)$

Results are presented as mean (\pm SD).

Medical University of Innsbruck, Division of Intensive Care and Emergency Medicine. Department of Internal Medicine. Innsbruck. Austria

^{*}baseline refers to the last value before application of ECCO2-R

Bleeding events consisted of two pulmonary bleedings, one large soft tissue hematoma and one hemothorax. Coagulation parameters are depicted below in Table 1. ECCO2-R was removed in all subjects after onset of the bleeding complication resulting in stabilization of the coagulation state.

Conclusions

Despite adequate anticoagulation subjects undergoing pump-driven veno-venous ECCO2-R developed coagulation disorders similar to disseminated intravascular coagulation with concomitant bleeding complications. The underlying mechanism remains to be clarified.

Published: 1 October 2015

Reference

 Kluge S, Braune SA, Engel M, Nierhaus A, Frings D, Ebelt H, et al: Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 2012, 38(10):1632-1639.

doi:10.1186/2197-425X-3-S1-A512

Cite this article as: Harler et al.: Coagulation disorders in subjects undergoing pump-driven veno-venous ECCO2-r for severe acute hypercapnic respiratory failure - a single center experience. Intensive Care Medicine Experimental 2015 3(Suppl 1):A512.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com