

POSTER PRESENTATION

Open Access

Artificial lung gas exchanges depend on ECMO settings

F Mojoli*, S Bianzina, I Bianchi, G Tavazzi, S Mongodi, M Pozzi, A Orlando, A Braschi

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

Artificial membrane lung (AL) gas exchanges are usually evaluated according to PaO_2/FiO_2 ratio. In addition, dead space ventilation and shunt fraction can be measured by the same equations used for native lungs [1].

Objectives

To study the effect of AL settings - gas flow (GF), blood flow (BF) and ${\rm FiO_2}$ - on AL ${\rm PaO_2/FiO_2}$ ratio, dead space and shunt, to suggest how to properly monitor these parameters.

Methods

We performed three different tests:

- a) GF changes (from 1 to 10 L/min) in 8 AL at clinically set BF and FiO₂;
- b) BF changes in 6 AL at constant ${\rm FiO_2}$ (1) and GF (10 L/min);
- c) ${\rm FiO_2}$ = 1 vs. clinically set ${\rm FiO_2}$ in 10 AL at clinically set BF and GF.

We performed pre- and post-oxygenator blood gas analysis and measured $\rm CO_2$ at AL exhaust port by sidestream capnography, in order to evaluate $\rm PaO_2/FiO_2$ ratio, dead space and shunt.

Results

- a) At clinically set BF (4.0 \pm 0.9 L/min) and FiO₂ (0.87 \pm 0.15), PaO₂/FiO₂ ratio did not correlate with GF, whereas dead space progressively increased with GF (R = 0.7904, p < 0.0001) (Figure 1).
- b) Data were collected at basal (3.3 \pm 0.7 L/min), increased (4.1 \pm 0.8 L/min) and decreased (2.5 \pm 0.6 L/min) BF. With the progressive increase of BF, dead space did not change, whereas PaO₂/FiO₂ ratio decreased and shunt increased (p < 0.001) (Figure 2).

Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, University of Pavia, Pavia, Italy

c) At clinically set BF (3.5 \pm 1.1 L/min) and GF (5.1 \pm 2.4 L/min), the mean difference \pm standard deviation of PaO₂/FiO₂ ratio and shunt obtained at clinically set (0.80 \pm 0.20) vs. FiO₂ = 1 was -76 \pm 109 mmHg and 2.1 \pm 11.6%, respectively.

Conclusions

To properly monitor AL CO_2 removal and oxygen transfer, evaluations should be performed at constant GF and at $FiO_2 = 1$ and constant BF, respectively.

Published: 1 October 2015

Reference

 Castagna L, Zanella A, Scaravilli V, Magni F, Deab SA, Introna M, et al: Effects on membrane lung gas exchange of an intermittent high gas flow recruitment maneuver: preliminary data in veno-venous ECMO patients. J Artif Organs 2015 Mar 26, [Epub ahead of print].

doi:10.1186/2197-425X-3-S1-A514

Cite this article as: Mojoli et al.: Artificial lung gas exchanges depend on ECMO settings. Intensive Care Medicine Experimental 2015 3(Suppl 1):

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com