POSTER PRESENTATION

Open Access

Effects of low dose intravenous sodium nitrite on arterial oxygenation and hemodynamics in experimental acute respiratory distress syndrome (ARDS)

S Kronfeldt^{1*}, P Lother¹, RCE Francis¹, T Busch², W Boemke¹, PA Pickerodt¹, ER Swenson^{3,4}

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

Nitrite (NO₂⁻) is an endogenous storage pool for nitric oxide (NO) [1]. We showed that sodium nitrite (NaNO₂) mitigates ventilator-induced lung injury via NO dependent mechanisms in rats [2].

Objectives

We hypothesized that low dose intravenous (i.v.) NaNO₂ may improve arterial oxygenation and reduce mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance (PVR) in ARDS in pigs.

Methods

ARDS was induced in 12 pigs by surfactant depletion due to saline lung lavages [3]. Two groups were investigated for 5 h: 1. Controls (n = 6) and 2. NaNO₂ i.v. (0.3 mg/kg

BW bolus, followed by 0.1725 mg/kg BW continuously; n = 6). We measured mean arterial pressure (MAP), MPAP and cardiac output as well as exhaled NO (NOex), blood gases and Wet/Dry-Ratios of lung tissue.

Results

At baseline the arterial oxygen tension (P_aO_2) was 539 ± 50 mmHg and 508 ± 35 mmHg in Controls and NaNO₂ i.v. respectively (fraction of inspired oxygen = 1.0). P_aO_2 decreased to 67 ± 17 mmHg (Controls) and 57 ± 13 mmHg (NaNO₂ i.v.) after ARDS induction. During the protocol, P_aO_2 increased to 120 ± 73 mmHg (Controls) and 103 ± 82 mmHg (NaNO₂ i.v.). NOex was unchanged in both groups. Lung Wet/Dry-Ratios were 8.1 ± 0.8 (Controls) and 8.9 ± 0.7 (NaNO₂ i.v.). For hemodynamic values see Table 1 (all values: mean ± SD).

Table 1

Groups	ТР	MPAP (mmHg)	PVR (dyn*s*cm-5)	MAP (mmHg)	SVR (dyn*s*cm-5)	CO (L/min)
Controls	TO	14 ± 3	205 ± 107	92 ± 6	2157 ± 520	3.5 ± 0.9
	T1	33 ± 6	360 ± 97	74 ± 13	966 ± 212	6.2 ± 0.7
	T2	27 ± 5	243 ± 78	67 ± 10	798 ± 196	6.6 ± 0.9
NaNO2 i.v. low dose	TO	15 ± 1	185 ± 26	90 ± 13	1967 ± 417	3.7 ± 0.4
	T1	34 ± 3	429 ± 78	72 ± 10	1092 ± 293	5.1 ± 0.5
	T2	29 ± 6	284 ± 82	68 ± 11	816 ± 320	6.9 ± 1.6

Mean pulmonary artery pressure (MPAP), pulmonary vascular resistance (PVR), mean arterial pressure (MAP), systemic vascular resistance (SVR), cardiac output (CO) in control animals (Controls; n = 6) and in animals treated with low dose intravenous sodium nitrite (NaNO2 i.v.; n = 6); Time point of measurement (TP): Baseline (TO); ARDS baseline (T1); End of experiment (T2); All values: mean \pm SD

¹Charité - Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany

© 2015 Kronfeldt et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conclusions

Lung lavage induced severe ARDS with increased MPAP and PVR in both groups. I.v. application of low dose $NaNO_2$ did not reduce lung edema formation and did not improve arterial oxygenation or pulmonary hemodynamics in this model of severe ARDS in pigs.

Grant Acknowledgment

This study was supported by the Deutsche Forschungsgemeinschaft (PI795/2-1).

Authors' details

¹Charité - Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany. ²Universität Leipzig, Department of Anesthesiology and Intensive Care Medicine, Leipzig, Germany. ³University of Washington, Department of Pulmonary and Critical Care Medicine, Seattle, WA, USA. ⁴Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.

Published: 1 October 2015

References

- Lundberg JO, Weitzberg E, Gladwin MT: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. NatRev Drug Discov 2008, 7(2):156-167.
- Pickerodt PA, Emery MJ, Zarndt R, Martin W, Francis RC, Boemke W, Swenson ER: Sodium nitrite mitigates ventilator-induced lung injury in rats. Anesthesiology 2012, 117(3):592-601.
- Lachmann B, Robertson B, Vogel J: In vivo lung lavage as an experimental model of the respiratory distress syndrome. *Acta Anaesthesiol Scand* 1980, 24(3):231-236.

doi:10.1186/2197-425X-3-S1-A574

Cite this article as: Kronfeldt *et al.*: **Effects of low dose intravenous** sodium nitrite on arterial oxygenation and hemodynamics in experimental acute respiratory distress syndrome (ARDS). *Intensive Care Medicine Experimental* 2015 **3**(Suppl 1):A574.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com