

POSTER PRESENTATION

Open Access

Time to start of cardiopulmonary resuscitation and the effect of target temperature management at 33°C and 36°C

J Dankiewicz^{1*}, T Cronberg², D Erlinge³, H Friberg¹, C Hassager⁴, J Horn⁵, J Hovdenes⁶, J Kjaergaard⁴, M Kuiper⁷, Y Gasche⁸, T Pellis⁹, P Stammet¹⁰, M Wanscher⁴, J Wetterslev¹¹, MP Wise¹², A Åneman¹³, N Nielsen¹⁴

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

The optimal target temperature for comatose patients resuscitated from out of hospital cardiac arrest is unknown. It has been hypothesized that patients with long no-flow times, for example those without bystander CPR would have the most to gain from temperature management at lower temperatures [1]. The generalizability of the TTM-trial [2] has been questioned because of a high fraction of patients receiving bystander cardiopulmonary resuscitation (CPR) (73%) and a median start of basic life support (for patients with bystander CPR) of 1 minute (Interquartile range 1-2 minutes).

Objectives

The aim of this study was to explore any potential interaction between temperature and no-flow time to investigate whether patients who had longer periods of cerebral ischemia had a better response to the lower target temperature of 33°C in the TTM-trial [2].

Methods

We analysed data from an international clinical trial randomizing cardiac arrest patients to targeted temperature management at 33°C and 36°C for an interaction between no-flow time and intervention group, with neurological function at 180 days after cardiac arrest as the primary outcome. A cerebral performance category (CPC) score of 1 or 2 was considered a good outcome. The interaction term was included in a multivariate logistic model adjusting for design variables in the TTM-trial.

¹Skåne University Hospital, Department of Anesthesiology and Intensive Care, Lund, Sweden

Full list of author information is available at the end of the article

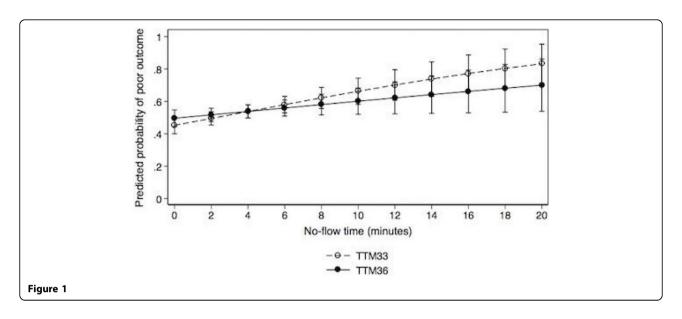
Results

The interaction between no-flow time and temperature group was not significant. Adjusted predictions showed no difference in the probability of a good neurological outcome for any value of no-flow time (Fig 1). In the group of patients with more than eight minutes of no-flow time the difference in the average predicted probability of a poor outcome was -0.018 (95% CI -0.17 - 0.13, p = 0.81) i.e. a non-significant decrease of 1.8% in the probability of a poor neurological outcome for patients treated at 36°C.

Conclusions

The neutral effect of the two temperature levels was consistent for all no-flow times.

The hypothesis that the efficacy of target temperature at 33°C vs. 36°C is influenced by no-flow time could not be supported.


Grant Acknowledgment

Supported by independent research grants from the Swedish Heart-Lung Foundation, Arbetsmarknadens Försäkringsaktiebolag Insurance Foundation, Swedish Research Council, Region Skåne (Sweden), Skåne University Hospital, TrygFonden (Denmark), and European Clinical Research Infrastructures Network.

Authors' details

¹Skåne University Hospital, Department of Anesthesiology and Intensive Care, Lund, Sweden. ²Skåne University Hospital, Department of Neurology, Lund, Sweden. ³Skåne University Hospital, Department of Cardiology, Lund, Sweden. ⁴The Heart Center, Copenhagen University Hospital, Copenhagen, Denmark. ⁵Academic Medical Centre, Department of Intensive Care, Amsterdam, Netherlands. ⁶Rikshospitalet, Oslo University Hospital, Department of Anesthesiology, Oslo, Norway. ⁷Department of Intensive Care, Leeuwarden Hospital, Leeuwarden, Netherlands. ⁸Geneva University Hospital, Department of Intensive Care, Geneva, Switzerland. ⁹Santa Maria degli

Ángeli, Department of Intensive Care, Pordenone, Italy. ¹⁰Centre Hospitalier de Luxembourg, Department of Anesthesiology and Intensive Care, Luxembourg, Luxembourg. ¹¹Copenhagen Trial Unit, Copenhagen, Denmark. ¹²University Hospital of Wales, Adult Critical Care, Cardiff, United Kingdom. ¹³Liverpool Hospital, Department of Intensive Care, Sydney, Australia. ¹⁴Helsingborg Hospital, Department of Anesthesiology and Intensive Care, Helsingborg, Sweden.

Published: 1 October 2015

References

- Testori C, et al: The beneficial effect of mild therapeutic hypothermia depends on the time of complete circulatory standstill in patients with cardiac arrest. Resuscitation 2012, 83(5):596-601.
- Nielsen N, et al: Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest. New England Journal of Medicine 2013.

doi:10.1186/2197-425X-3-S1-A844

Cite this article as: Dankiewicz *et al.*: Time to start of cardiopulmonary resuscitation and the effect of target temperature management at 33°C and 36°C. *Intensive Care Medicine Experimental* 2015 3(Suppl 1):A844.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com