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Abstract

Background: Neutrophil extracellular traps (NETs) are a central player in the
host response to bacteria: neutrophils release extracellular DNA (nucleosomes)
and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs
in Burkholderia pseudomallei infection (melioidosis), an important cause of
Gram-negative sepsis in Southeast Asia.

Methods: In a prospective observational study, circulating nucleosomes and neutrophil
elastase were assayed in 44 patients with Gram-negative sepsis caused by B. pseudomallei
(melioidosis) and 82 controls. Functional assays included human neutrophil stimulation
and killing assays and a murine model of B. pseudomallei infection in which NET function
was compromised using DNase. Specified pathogen-free 8- to 12-week-old C57BL/6 mice
were sacrificed post-infection to assess bacterial loads, inflammation, and pathology.

Results: Nucleosome and neutrophil elastase levels were markedly elevated in patients
compared to controls. NETs killed B. pseudomallei effectively, and neutrophils stimulated
with B. pseudomallei showed increased elastase and DNA release in a time- and
dose-dependent matter. In mice, NET disruption with intravenous DNase administration
resulted in decreased nucleosome levels. Although DNase treatment of mice resulted in
diminished liver inflammation, no differences were observed in bacterial dissemination
or systemic inflammation.

Conclusion: B. pseudomallei is a potent inducer of NETosis which was reflected by
greatly increased levels of NET-related components in melioidosis patients. Although NETs
exhibited antibacterial activity against B. pseudomallei, NET formation did not protect
against bacterial dissemination and inflammation during B. pseudomallei-induced sepsis.

Keywords: Sepsis; Burkholderia pseudomallei; Melioidosis; Neutrophil extracellular traps
(NETs); Neutrophils; Diabetes; Survival; DNase; Innate immunity
Background
Melioidosis (Gram-negative infection caused by Burkholderia pseudomallei) is a major

cause of severe community-acquired sepsis in Southeast Asia and northern Australia

[1,2]. The clinical manifestations of B. pseudomallei infection range from chronic skin

abscess to acute fulminant sepsis. Despite antibiotic treatment, melioidosis patients with

bacteremia or pneumonia have a mortality rate of approximately 40% [3,1,2]. Melioidosis

is therefore a good clinical model in which to study Gram-negative sepsis [4-6].
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Neutrophils constitute the central line of the innate immune defense against many

bacteria [7,8]. Their arsenal is impressive and ranges from killing and phagocytosis to

the production and release of antimicrobials and immunoregulatory cytokines [9,2].

Neutrophils play a critical role in the host defense against B. pseudomallei. Although

excessive neutrophil recruitment may be detrimental to the host [10], neutrophils are

essential for early bacterial containment. Activated neutrophils are rapidly recruited to

the lungs upon infection, and neutrophil depletion leads to accelerated mortality in

mice [11,12]. Not surprisingly, conditions that predispose individuals to melioidosis, most

notably diabetes mellitus, are associated with impaired neutrophil function [3,13-15].

Neutrophil extracellular traps (NETs; another effector mechanism of neutrophils)

consist of extracellular DNA and histone-based structures decorated by antimicrobials

such as neutrophil elastase and myeloperoxidase. They ensnare bacteria, degrade

virulence factors, and ultimately kill their target [16]. Besides their antimicrobial

function, NETs also induce a strong procoagulant response via extracellular nucleosomes

(extracellular frames consisting of DNA and histones) within the NETs, which stimulates

the proteolytic activity of neutrophil elastase and in turn promotes coagulation [17-20].

Virtually, all microbes that cause sepsis (including B. pseudomallei) have been shown to

induce NET formation in vitro [7,21,16]. In a mouse model of intraperitoneal Escherichia

coli infection, it was recently shown that NETs released into the vasculature were able to

trap bacteria from the bloodstream and prevent bacterial dissemination [22]. Intriguingly,

some bacteria (such as certain strains of Streptococcus pneumoniae and Pseudomonas

aeruginosa) have developed mechanisms to circumvent NET-mediated killing, for

example, via DNase [21,23,8,19]. In theory, overwhelming NETosis or a reduced

clearance capacity of NETs could be detrimental to the host during sepsis and contribute

to ongoing inflammation, organ damage, and/or exhaustion of the immune system

[21]. In the context of sepsis, free circulating DNA is regarded as an endogenous danger

signal or ‘danger-associated molecular pattern’ (DAMP). DAMPs are released during

inflammatory stress and trigger the host immune response [24-26]. The role and

consequences of NET formation during human sepsis, however, remain ill-defined.

In this study, we examined the expression of NET-related markers in patients with

melioidosis. We examined next the functional role of NETs in an in vitro model of

B. pseudomallei infection, then examined the role of NETs in vivo by treating mice

infected with B. pseudomallei with DNase to disrupt the DNA backbone of NETs.
Methods
Studies of clinical melioidosis

The clinical study was approved by the Oxford Tropical Research Ethics Committee

(OXTREC 018-07) and the Ethics Committee of Mahidol University (MUTM 2008-

001-01). This co-host has been described previously [27]: 44 patients with culture-proven

melioidosis and sepsis, from whom ethylenediaminetetraacetic acid (EDTA) plasma was

obtained on day of recruitment, 7 days after, and at a follow-up clinic ≥28 days after

discharge. Patients were recruited within 48 h of admission. All patients had culture-

proven melioidosis and had two out of four criteria for systemic inflammatory response

syndrome (SIRS) [28]. Eligible patients had received active antimicrobial chemotherapy

for less than 48 h (ceftazidime, amoxicillin-clavulanate, meropenem, or imipenem).
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Thirty-four patients were classed as diabetic if they had an HbA1c ≥7.8% at enroll-

ment or a diagnosis of diabetes made prior to admission. Eighty-two healthy subjects

served as controls (52 with diabetes and 30 without; Additional file 1: Table S1).

Peripheral leukocyte gene expression was determined via microarray analysis, as

described previously [29]. RNA was assayed using HumanWG-6 v3.0 Expression

BeadChips (Illumina®, Illumina Inc., San Diego, CA, USA), and data have been deposited

at ArrayExpress, EMBL-EBI (accession-number E-TABM-852-n). We interrogated this

database for proteins co-localizing to NETs [17]. To assess human neutrophil elastase,

complexes together with α1-antitrypsin were assayed in plasma by ELISA, as elastase in

plasma is immediately inactivated by the formation of these covalent complexes and is

hardly detectable in its active form [30,31]. Nucleosome levels were determined in EDTA

plasma by enzyme-linked immunosorbent assay (ELISA) [32,33]. In brief, the capture

antibody was CLB-ANA/60 (which recognizes histone-3). The detector antibody was

biotinylated CLB-ANA/58 (which recognizes an epitope exposed on complexes of

histone-2A, histone-2B, and dsDNA). The reaction was read using poly-HRP and

3,3′,5,5′-tetramethylbenzidine as the chromogenic substrate.
Human neutrophil stimulation

B. pseudomallei strain 1026b [34] was cultured overnight and transferred to fresh Luria

broth for 3 h in a 37°C shaker to yield bacteria at mid log-phase. Staphylococcus aureus

strain LAC (USA 300; a known NET inducer [35]) was grown to stationary phase for

20 h in tryptic soy and brain-heart infusion broth at 37°C. Bacteria were centrifuged for

2 min at 300×g and the resulting pellet resuspended in Hanks' balanced salt solution (HBSS)

with Ca2+ and Mg2+ (HBSS+/+; Gibco, Invitrogen, Carlsbad, CA, USA) before use.

Human neutrophils were isolated from peripheral blood of healthy donors using

Polymorphprep™ (Axis-Shield, Oslo, Norway). Following erythrocyte lysis, neutrophils

were washed and resuspended with HBSS without Ca2+ and Mg2+ (HBSS−/−) [7]; ≥99%
of neutrophils were viable as determined by trypan blue exclusion [36]. Human NETs

were induced as described previously [7,17]. In brief, neutrophils were resuspended in

HBSS−/− (final concentration 2 × 105 cells/100 μL) and infected with 100 μL HBSS+/+

containing live B. pseudomallei (final concentration 2 × 105 to 2 × 107 cfu) at 37°C and

5% CO2 to induce NET formation. HBSS+/+ medium alone served as the negative control;

20 nM phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich Corporation, St. Louis, MO,

USA) and S. aureus (2 × 105 cfu) served as positive controls. Supernatant was harvested at

0, 1, and 4 h and passed through a 0.2-μm filter (Millipore, Billerica, MA, USA) to remove

live bacteria prior to storage at −20°C. For DNA quantification, cells were washed once with

medium before adding HBSS−/−, Ca2+ and Mg2+ (5 mM), and 0.1 U/mL DNase (Roche

Diagnostics, Indianapolis, IN, USA) and incubated for a further 2 h at 37°C. Sterile 20 mM

EDTA (Thermo Scientific, Waltham, MA, USA) was added to stop DNase activity. In

control wells, EDTA was added prior to incubation with DNase.

To examine the growth-inhibiting properties of NETs on B. pseudomallei, 3 × 105

human neutrophils per well were resuspended in 50 μL Iscove's modified Dulbecco's

medium (IMDM; Gibco) in a 96-well plate, then stimulated with 100 nM PMA for 5 h

at 37°C (5% CO2) to induce NET formation [7]. Following NET formation, the cells

were preincubated for 30 min at 37°C with 50 U DNase, heat-inactivated DNase (80°C
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for 10 min), or phosphate-buffered saline (PBS). NETs were stained with Sytox Green

5 mM (Molecular Probes, Eugene, OR, USA) and then visualized using a confocal

microscope (Olympus IX81, Olympus Corporation, Tokyo, Japan). The supernatant was

discarded, and approximately 7 × 102 cfu/100 μL IMDM of log-phase B. pseudomallei

were added to the wells and spun down for 5 min at 300×g. After 10 h, bacterial loads

were quantified by culture on horse blood agar.

Free elastase in the supernatant was assayed by ELISA as in the absence of plasma no

complexes are formed with α1-antitrypsin, as described previously [37,30]. Since NET

formation is quantified by the measurement of DNA release after DNase treatment,

and DNA will degrade the epitope of the anti-nucleosome antibody, measurement of

nucleosomes by this ELISA is not suitable [38]. Therefore extracellular DNA was

quantified in the supernatant using a Quant-iT™ Picogreen® dsDNA Assay Kit (Invitrogen)

according to the manufacturer's instructions and was analyzed with a SpectraFluor Plus

absorbance reader (Tecan Group, Männedorf, Switzerland).
Mouse experiments

Mouse experiments were approved by the Academic Medical Center Animal Use and Wel-

fare Committee (DIX16AB). Pathogen-free 8- to 12-week-old C57BL/6 mice (Charles River,

Wilmington, MA, USA) were inoculated intranasally with 1,000 (LD100) or 125 (LD50) cfu

B. pseudomallei 1026b in a 50-μL saline solution (eight per group) as described previously

[39,40]. Mice were treated intravenously with 2,000 U DNase I (Roche) in 200 μL PBS at 0,

4, 20, 26, 42, and 50 h post-inoculation to disrupt the NET backbone; control mice received

200 μL PBS intravenously as described [22]. Lung, broncheoalveolar lavage fluid (BALF),

liver, and EDTA blood were collected for bacterial culture and cytokine assays as described

previously [41]. Nucleosomes were assayed in plasma and BALF to quantify NET formation.

Neutrophil counts in BALF were determined by FACS (FACSCalibur; Becton Dickson,

San Jose, CA, USA) using directly labeled antibodies against Gr-1 (Ly-6G; Gr-1 FITC; BD

Pharmingen, BD Biosciences, San Jose, USA). Nucleosome levels were measured by ELISA

[32,33]. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and chemokine (C-X-C

motif) ligand 1 (CXCL1 or KC) in lung homogenates were measured by sandwich ELISA

(R&D Systems, Minneapolis, MN, USA) [41]. Plasma cytokine concentrations (TNF-α, IL-6,

interferon (IFN)-γ, IL-10, monocyte chemotactic protein-1 [MCP-1 or CCL2], and IL-12p70)

were measured by cytometric bead array (BD Biosciences). Lactate dehydrogenase (LDH),

aspartate aminotransferase (AST), alanine transaminase (ALT), urea, and creatinine were

measured in plasma with spectrophotometry (Roche Diagnostics). Lung and liver inflam-

mation were scored histologically as described previously [42,41,40]. In brief, lung inflam-

mation and damage of tissue were analyzed with respect to the following parameters:

surface with pneumonia, necrosis and/or formation of abscess, interstitial inflammation,

endothelialitis, bronchitis, edema, thrombus formation, and pleuritis. Liver pathology was

analyzed with respect to the following parameters: area of liver with parenchymal inflam-

mation, necrosis and/or abscess formation, portal inflammation, and thrombus formation.
Statistical analysis

Gene expression data were analyzed using R-Bioconductor, as described previously

[29]. We log-transformed neutrophil elastase and nucleosome concentrations to correct
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for heteroscedasticity. For correlations, Pearson r is reported. In the kinetic assay, P values

reported are for the slope of the linear regression model with elastase or DNA as the

dependent variable and time point or stimulus as independent variables. Differences

between murine groups were analyzed by the Mann-Whitney U or unpaired t test where

appropriate. Analyses were done in GraphPad Prism version 6.0 for Mac OS X (GraphPad

Software), and data are expressed as mean and SD unless stated otherwise.
Results
Nucleosome and neutrophil elastase levels are markedly elevated in patients with melioidosis

and correlate with disease severity

To establish the presence of NETs during clinical melioidosis, we measured nucleosomes

(complexes of extracellular DNA and histones and a useful measure of cell-free DNA in

plasma) and neutrophil elastase (a measure of neutrophil degranulation) in the plasma of

44 patients with septic melioidosis and 82 healthy controls. Both are key NET-related

markers [17,18,43], and both nucleosome (P < 0.0001) and elastase levels (P < 0.0001) were

abundant in the plasma of patients with melioidosis on day of recruitment compared to

healthy controls (Figure 1A,D).

The mortality rate of 27% (12 of 44) in this cohort enabled us to correlate the presence

of these NET-related markers with disease severity. No differences were seen in the

admission nucleosome and neutrophil elastase levels when comparing survivors and

non-survivors (Figure 1B,E). No differences were seen in concentration levels of both

NET markers in non-survivors on day of enrollment and day 7. All non-survivors

died before the 28 day time point. However, a marked difference in nucleosome
Figure 1 NET-related markers are abundantly present in plasma from patients with melioidosis with
or without diabetes. Increased levels of NET-related markers such as nucleosomes and neutrophil elastase are
measured in plasma of patients on day of initial presentation with sepsis caused by B. pseudomallei (melioidosis)
compared to healthy control subjects. No difference was found between melioidosis patients with or without
diabetes (A, D). No difference was seen between melioidosis survivors versus non-survivors (B, E). Straight lines
represent the mean, and dashed lines mark the lower limit of detection. Nucleosome levels and neutrophil
elastase were measured in all surviving patients on day of enrollment, day 7, and day 28 (follow-up). There is no
difference when looking at the normalization of the NET-related makers over time between melioidosis patients
with or without diabetes (C, F). Mean and SEM are shown. ***P < 0.001 (unpaired t test).
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concentrations between survivors and non-survivors at day 7 was seen: at this time

point, patients that went on to die had significantly higher nucleosome levels (192.3 ±

5) compared to survivors (33.6 ± 4; P = 0.001). Evidence for an association between

nucleosome and neutrophil elastase plasma levels and disease severity was obtained

in patients who survived, a second blood sample was drawn during treatment (at day 7) and

after successful completion of therapy (≥28 days from discharge). In all surviving patients,

plasma nucleosome and elastase concentrations moved toward normal (Figure 1C,F).

Moreover, neutrophil activation (evidenced by elastase-α1-antitrypsin complexes) was

strongly correlated with nucleosome levels at admission (P < 0.001, Figure 2), supporting

the hypothesis that neutrophils are the source of nucleosomes. Of note, gene expression

of proteins known to be associated with NET formation [17] was determined in total per-

ipheral leukocytes derived from patients with culture-confirmed septic melioidosis and

healthy controls. In line with the protein measurements, a marked up-regulation of

genes encoding the central NET-associated proteins nucleosome histone-2B and

histone-4 was found (Additional file 2: Table S2).

No influence of diabetes on the release of the NET-related markers

Since diabetes is the main risk factor for melioidosis and diabetes is known to negatively

influence neutrophil function [3,15,14], we next sought to determine whether the pres-

ence of diabetes influenced the release of NET-related markers in our cohort of patients

of whom 72% were diabetic. We found no difference in the release of the NET-related

markers in melioidosis when comparing patients with or without diabetes on day of re-

cruitment. In addition, NET-related markers were not different in healthy controls with

or without diabetes (Figure 1A,D).

Elastase and extracellular DNA are released by neutrophils in a dose- and time-dependent

fashion upon stimulation with B. pseudomallei

To examine whether neutrophils were the common source of NET-related marker release

in patients with melioidosis, we isolated human neutrophils from healthy individuals and

stimulated them with various known NET inducers as well as B. pseudomallei upon which
Figure 2 Neutrophil elastase and nucleosome release are highly correlated in patients with melioidosis.
Linear regression of neutrophil elastase versus nucleosomes. Correlation coefficient reported is for Pearson's r.
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the kinetics of elastase and extracellular DNA in culture supernatants was determined.

Consistent with the patient data, elastase levels increased following stimulation with

B. pseudomallei, and this occurred in a dose-dependent (P < 0.001, Figure 3A) and time-

dependent manner (P = 0.005, Figure 3C). Extracellular DNA release also increased in a

time- and dose-dependent manner following B. pseudomallei infection: extracellular DNA

concentrations increased as the multiplicity of infection (MOI) increased (P < 0.001,

Figure 3C) and over time (P < 0.001, Figure 3D). Of note, B. pseudomallei-infected

cells released similar amounts of elastase and DNA as S. aureus (Additional file 3:

Figure S1), itself a potent NET inducer [44]. Elastase levels and DNA release were

also strongly correlated, reflecting the clinical data (Figure 3E).
NETs exhibit antibacterial activity against B. pseudomallei

We next sought to examine whether activated NETs were able to kill B. pseudomallei.

We pre-stimulated human neutrophils with PMA for 5 h to induce NET formation

[7,17], then preincubated the cells with PBS or DNase prior to infection with B.

pseudomallei. Extracellular degradation of DNA by DNase treatment was confirmed

by confocal microscopy (Figure 4A,B). Disrupting the backbone of the NETs with

active DNase impaired the killing of B. pseudomallei by NETs from human neutrophils

(Figure 4C). Taken together, these data confirm the involvement of NETs in the killing of

B. pseudomallei by neutrophils.
Figure 3 NET-related markers are released by neutrophils in a dose- and time-dependent fashion.
The kinetics of B. pseudomallei-induced NET formation at various multiplicities of infections (MOI; 10°, 101,
102) and time points (0, 1, and 4 h) were assessed by quantifying elastase (A, C) and extracellular DNA
using a Picogreen dsDNA kit (B, D), in the supernatant of stimulated isolated human neutrophils. The
negative control (−) was medium (HBSS−/−), and the positive control (+) was PMA, a known inducer of
NETs. Both elastase and DNA increase in a time- and dose-dependent manner following B. pseudomallei
(Bps) stimulation. The mean and SD are expressed. (E) The two NET markers, elastase and DNA, were highly
correlated, suggesting that neutrophils are the source of this extracellular DNA. All experiments used whole
blood from three to six different healthy human volunteers. Elastase results were log-transformed to correct
for heteroscedasticity. P values reported are for the slope of linear regression models with elastase or DNA
as the dependent variables and time point or MOI as independent variables. **P < 0.01; ***P < 0.001.



Figure 4 NETs exhibit antibacterial activity against B. pseudomallei. Representative confocal micrographs
of human neutrophils stimulated with PMA (A) to produce NETs and post-stimulation treated with PBS,
heat-inactivated (HI) DNase, or active DNase (B), before infection with 7 × 102 cfu B. pseudomallei (C). Data are
expressed as mean and SD. P value was determined via one-way ANOVA. Blood from three different healthy
human volunteers was used.
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NETs do not protect against bacterial dissemination in B. pseudomallei-induced sepsis

Having confirmed that NETs are capable of killing of B. pseudomallei in vitro, we

sought to replicate this finding in a murine model of melioidosis. We infected mice
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with a lethal challenge of B. pseudomallei (103 cfu) and treated half of them with intra-

venous DNase twice daily in order to disrupt NET formation, as described previously

[22]. Animals were sacrificed after 24 or 72 h to determine bacterial loads in BALF and

lung (primary sites of the infection), and the liver and blood (to evaluate the extent of

bacterial dissemination). In this murine model of Gram-negative sepsis, untreated mice

showed an increase of nucleosome levels in plasma (17.6 ± 15) and BALF (202.7 ± 110)

24 h post-infection (Figure 5A,D). In comparison, uninfected untreated mice (t = 0)

had low to undetected plasma and BALF nucleosome levels (5.6 ± 3 and 12.9 ± 5,

respectively). DNase treatment resulted in successful disruption of intravascular NET

formation, as illustrated by significantly decreased nucleosome levels in both plasma

(5.3 ± 3, P = 0.03) and BALF (93.9 ± 29, P = 0.02) compared to untreated mice 24 h

post-infection (Figure 5A,D). Disruption of intravascular NETs did not, however,

result in changes in bacterial loads in BALF, lung, blood, or liver (Figure 5). In line

with the bacterial loads, no differences were seen in total cell count or neutrophil

influx in BALF between DNase-treated and untreated mice after infection (data not

shown). Because cytokines are important regulators of the inflammatory response to

bacterial pneumonia [45], we measured pulmonary (TNF-α, IL-6, IL-10, CXCL1)

and systemic (TNF-α, MCP-1, IL-6, IFN-γ, IL-10, IL12p70) cytokine and chemokine

levels (Table 1). Levels of all cytokines were elevated in both pulmonary and systemic

compartments (with the exception of IL-10) upon B. pseudomallei infection. However, in

complete correspondence with bacterial loads and cellular influx, no differences were seen

between the DNase-treated animals and controls.

We speculated that the infectious challenge might have been too high to reveal an

effect of NET blockade in our model and therefore repeated the experiments with a

lower inoculum (1.25 × 102 cfu which is the LD50). Again, although significant reductions
Figure 5 Disruption of NETs does not influence bacterial dissemination during experimental melioidosis.
C57/Bl6 wild-type (WT) mice were intranasal infected with B. pseudomallei (103 cfu) and either treated with
intravenous PBS (control group) or 2,000 U DNase I recombinant (DNase-treated group) at various time
points [22]. Compared to control mice, DNase-treated mice show reduced nucleosome levels in plasma (A) and
bronchoalveolar lavage fluid (BALF) (D) after 24 h of infection. Data are expressed as box-and-whisker diagrams
depicting the smallest observation, lower quartile, median, upper quartile, and largest observation. Equal bacterial
titers were seen in BALF (B), lung homogenates (C), blood (E), and liver homogenates (F) during all time points
after infection in the DNase I-treated mice compared to control mice. Median values (straight lines) and the lower
limit of detection (dashed lines) are shown. Graphs depict eight mice per group and time point. Statistical
significance was determined using the unpaired Mann-Whitney U test. *P < 0.05.



Table 1 Cytokines and markers for systemic organ injury do not differ between mice
treated with intravenous DNase or PBS post-infection with B. pseudomallei

24 h 72 h

Control DNase P value Control DNase P value

Plasma

TNF-α (pg/mL) 3.3 ± 2 4.1 ± 2 0.41 407 ± 319 328.3 ± 300 0.62

MCP-1 (pg/mL) 11.7 ± 13 21.5 ± 8 0.09 3,976 ± 2,183 2,879 ± 1,937 0.31

IL-12p70 (pg/mL) ND ND 8.6 ± 10 21.6 ± 20 0.13

IL-6 (pg/mL) 115.3 ± 73 104 ± 62 0.74 8,022 ± 3,814 6,990 ± 4,252 0.62

IFN-γ (pg/mL) 4.0 ± 6 4.8 ± 4 0.76 1,914 ± 1,152 1,791 ± 1,490 0.86

IL-10 (pg/mL) ND ND ND ND

AST (U/L) 63.6 ± 6 74.4 ± 37 0.83 356.6 ± 191 247 ± 143 0.50

ALT (U/L) 21.7 ± 9 27 ± 24 0.92 155.4 ± 59 138 ± 98 0.60

LDH (U/L) 210 ± 74 312.9 ± 157 0.21 1,115 ± 758 873.2 ± 375 0.71

Urea (mmol/L) 9.8 ± 2 7.7 ± 2 0.04 15.9 ± 10 14.4 ± 5 0.91

Creatinine (μmol/L) 11.3 ± 2 9.6 ± 4 0.43 15.7 ± 17 8.4 ± 7 0.53

Lung

TNF-α (pg/mL) 239.1 ± 110 427.8 ± 100 0.003 3,182 ± 1,440 3,261 ± 1,382 0.91

IL-6 (pg/mL) 945.9 ± 348 1,103 ± 201 0.29 8,601 ± 3,329 7,521 ± 3,482 0.54

IL-10 (pg/mL) 205.8 ± 147 266.4 ± 57 0.29 559.4 ± 219 498.3 ± 107 0.49

CXCL1 (pg/mL) 6,771 ± 4,247 6,147 ± 2,284 0.72 26,421 ± 10,123 26,305 ± 10,450 >0.99

Cytokines and markers for systemic organ injury were measured in plasma and/or lung homogenates 24 and 72 h
post-infection. Data are means ± SD (cytokines) or median (range) of five to eight mice per group. Actual P values are shown,
determined via t test or Mann-Whitney U where appropriate; ND, not detectable or below detection limit; TNF-α, tumor
necrosis factor-alpha; MCP-1, monocyte chemo-attractive protein-1; IL, interleukin; IFN-γ, interferon-gamma; AST, aspartate
transaminase; ALT, alanine transaminase; LDH, lactate dehydrogenase; CXCL1, chemokine (C-X-C motif) ligand 1.
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of nucleosomes of DNase-treated mice were seen in BALF (P = 0.002) compared to

untreated mice, no differences were seen in bacterial burdens in BALF, lung, blood, or

liver nor local or systemic inflammatory cytokine levels 72 h post-infection (data not

shown). These results indicate that disrupting NET release by degradation of the

DNA backbone does not impair the host defense against B. pseudomallei infection.

Intravascular NETs cause collateral liver damage during experimental melioidosis

It has been reported previously that NETs are implicated in tissue damage during E. coli

sepsis [22]. We therefore examined lung and liver tissue histologically for inflammation.

No differences in lung pathology scores were observed between groups (Figure 6A,B,C).

In accordance with a previous report, however, we found that significantly less liver

inflammation was seen in the DNase-treated group when compared to controls at 72 h

post-infection (P = 0.04, Figure 6D,E,F). It should be noted, however, that serum levels of

AST and ALT, both markers of hepatocellular injury, as well as urea, creatinine, and LDH,

markers of kidney and systemic organ injury, showed a trend toward lower values in the

DNase-treated mice, although this did not reach statistical significance (Table 1). We con-

clude that there is only a limited role for NETs during B. pseudomallei infection in vivo.

Discussion
NETs have emerged as key players in the innate host response to many bacteria.

Neutrophils release extracellular DNA (including nucleosomes) and neutrophil elastase to



Figure 6 Effect of DNase treatment on pulmonary and hepatic inflammation after infection with B.
pseudomallei. Representative hematoxylin and eosin stained slides of lung (A, B) and liver (D, E) of control
and DNase-treated mice 72 h post-infection with B. pseudomallei (103 cfu). Marked inflammation was seen
post-infection, and areas of necrosis (marked with a number sign) and thrombosis formation (marked with
an asterisk) were seen in both groups. Significantly less liver inflammation was observed in the DNase-treated
group when compared to controls 72 h after infection. Total organ pathology score (lung and liver (C, F)) was
determined 24 and 72 h post-infection according to the scoring system as described [41,39,40]. Graphs depict
eight mice per group and time point. Median values are shown, and statistical significance was determined
using the unpaired Mann-Whitney U test. *P < 0.05.
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entrap and capture bacteria [16], and animals depleted of neutrophils are markedly more

susceptible to B. pseudomallei infection [12]. Our study extends the description of the role

of NETs in the host response to Gram-negative sepsis caused by B. pseudomallei in

both clinical melioidosis and a murine model of melioidosis. We found that the key

NET components, nucleosomes and neutrophil elastase, were both elevated in clinical

melioidosis. In vitro observations supported the notion that neutrophils are the source

of these proteins and isolated human neutrophils infected with B. pseudomallei released

NET-related markers in a time- and dose-dependent manner. We further showed that

NETs killed B. pseudomallei in an in vitro human neutrophil infection model, although in

a murine model of experimental melioidosis, in which DNase was used to disrupt

NET formation, no protective role for NETs in the host defense against B. pseudomallei

infection could be demonstrated.

Our data corroborate a previous report in which it was shown that bactericidal NETs

were released from human neutrophils in response to B. pseudomallei in an in vitro

model [46]. In addition, we recently showed that inhibition of endogenous activated

protein C, which exerts cytoprotective effects on the endothelium by cleavage of histones

[47], leads to excessive nucleosome release in BALF during murine experimental melioid-

osis [48]. We now demonstrate that there is an abundant release of NET-related markers

in plasma from melioidosis patients. In vitro experiments demonstrated that NET-related

markers are released by neutrophils and exhibit NET-dependent antibacterial activity

upon infection with B. pseudomallei.

Surprisingly, we found that NETs played no role in bacterial clearance in our experimental

mouse model of sepsis. In DNase-treated mice, circulating nucleosomes were decreased but
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there was no difference in cellular influx nor bacterial counts and cytokine release. This also

argues against a role for nucleosomes (which can become harmful to the host when released

in excessive amounts [25,26]) as significant endogenous danger signals in melioidosis. This

correlates with our clinical finding that the concentration of circulating NET markers in

melioidosis patients was not different between survivors and non-survivors on day of

admission. We did however find a difference between survivors and non-survivors on day

7, which is in line with our previous finding that circulating nucleosomes correlated with

severity of the inflammatory response and outcome in a cohort of children suffering from

meningococcal sepsis [49].

ELISAs detecting nucleosomes have proven to be a good indicator of NET release in

patients [43] but are not specific for nucleosomes released by neutrophils. We therefore

cannot exclude that nucleosomes released into the circulation by other cell types, such as

endothelial and parenchymal cells, are detected as well. However, the positive correlation

with neutrophil elastase together with the marked up-regulation of genes encoding

the central NET-associated proteins does suggest that neutrophils are the main source

of the detected nucleosomes. Although B. pseudomallei can induce NET release,

NETs are predominantly a mechanism for clearing extracellular pathogens, and B.

pseudomallei may escape NETosis by hiding intracellularly [50,21,51]. Indeed, it was

found that both the type 3 secretion system (an important virulence factor of B.

pseudomallei) and the bacterial capsule may play a role in evading NETs [46].

Furthermore, one could hypothesize that like S. aureus [52], B. pseudomallei is able

to cause leukocyte toxicity by converting NETs into a bioproduct thereby inducing

macrophage apoptosis. However, this mechanism would be unfavorable for B. pseu-

domallei as it is already known that macrophage destruction is one of the host

immune defense strategies to restrict intracellular growth of B. pseudomallei [2]. Another

possibility could be that plasma from patients with severe sepsis induces platelet-

neutrophil interactions in a TLR4-dependent fashion leading to the production of NETs

[53,22], whereas TLR4 does not seem to play an important role in the clearance of

B. pseudomallei [2,41].

At least a third of all patients with melioidosis have diabetes mellitus as a predisposing

factor [3,1,2]. An explanation for this increased susceptibility was sought in the function

of neutrophils from diabetic patients, which displayed impaired phagocytosis of B.

pseudomallei, reduced migration, and the inability to produce an oxidative burst to

kill intracellular bacteria [54]. Furthermore, it was shown that isolated neutrophils from

patients with diabetes mellitus released less extracellular DNA upon in vitro stimulation

with B. pseudomallei, which was associated with a reduced bacterial killing capacity when

compared to neutrophils derived from healthy controls [46]. However, in our study, we

did not observe a difference in the release of NET-related markers between diabetic and

non-diabetic melioidosis patients. The combination of clinical data and data from our

murine model argues against an important role for the NETs in melioidosis. Our data also

suggest that impaired NET release does not provide an explanation for the increased

susceptibility to B. pseudomallei infection in patients with diabetes.

NET formation may also injure the host [21]: our finding that DNase-treated mice

have diminished hepatocellular injury after infection is consistent with previous reports

in which mice deficient in NET components have decreased hepatocellular inflamma-

tion compared to controls in an E. coli-induced sepsis model [55,22].
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Conclusion
We have shown that B. pseudomallei is a potent inducer of NETosis, as reflected by

increased concentrations of NET-related components in patients with melioidosis.

Although NETs exhibit antibacterial activity against B. pseudomallei in vitro, NET

formation does not protect against bacterial dissemination and inflammation in a

murine model of B. pseudomallei infection. This correlates with our clinical finding

that levels of NET components do not correlate with mortality.
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Additional file 3: Figure S1. B. pseudomallei is as potent as S. aureus in the induction of NETosis. Isolated human
neutrophils were stimulated with either Burkholderia pseudomallei (Bps) or Staphylococcus aureus (SA) for 4 h after
which elastase (A) and extracellular DNA (B) release were measured. For both bacterial strains, equal MOIs (101)
were used. Medium (HBSS−/−) served as negative control and PMA, a known inducer of NETs, as positive control.
Extracellular DNA was measured using a Picogreen dsDNA kit. Mean and SDs are shown. P value comparing Bps,
SA, and PMA to medium control was determined via unpaired t test after log transformation of the data. Blood
from three to six different healthy human volunteers were used. P values *< 0.05, **< 0.01, ***< 0.001 are shown.
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