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Abstract

Background: Microcirculatory dysfunction due to excessive nitric oxide production
by the inducible nitric oxide synthase (iNOS) is often seen as a motor of
sepsis-related organ dysfunction. Thus, blocking iNOS may improve organ function.
Here, we investigated neuronal functional integrity in iNOS knock out (−/−) or
l-NIL-treated wild-type (wt) animals in an endotoxic shock model.

Methods: Four groups of each 10 male mice (28 to 32 g) were studied: wt, wt +
lipopolysaccharide (LPS) (5 mg/kg body weight i.v.), iNOS(−/−) + LPS, wt + LPS + l-NIL
(5 mg/kg body weight i.p. 30 min before LPS). Electric forepaw stimulation was
performed before LPS/vehicle and then at fixed time points repeatedly up to 4.5 h.
N1-P1 potential amplitudes as well as P1 latencies were calculated from EEG
recordings. Additionally, cerebral blood flow was registered using laser Doppler.
Blood gas parameters, mean arterial blood pressure, and glucose and lactate levels
were obtained at the beginning and the end of experiments. Moreover, plasma IL-6,
IL-10, CXCL-5, ICAM-1, neuron-specific enolase (NSE), and nitrate/nitrite levels were
determined.

Results: Decline in blood pressure, occurrence of cerebral hyperemia, acidosis, and
increase in lactate levels were prevented in both iNOS-blocked groups. SEP amplitudes
and NSE levels remained in the range of controls. Effects were related to a blocked
nitrate/nitrite level increase whereas IL-6, ICAM-1, and IL-10 were similarly induced in
all sepsis groups. Only CXCL-5 induction was lower in both iNOS-blocked groups.

Conclusions: Despite similar hyper-inflammatory responses, iNOS inhibition
strategies appeared neurofunctionally protective possibly by stabilizing macro- as
well as microcirculation. Overall, our data support modern sepsis guidelines
recommending early prevention of microcirculatory failure.

Keywords: Inflammation; Somatosensory-evoked potentials; Neurovascular
coupling; Nitric oxide synthase; iNOS knock out
Background
Sepsis and systemic inflammatory response syndromes (SIRS) are the leading causes of

mortality in intensive care units [1,2]. Excessive production of nitric oxide (NO) by the

inducible nitric oxide synthase (iNOS) plays a crucial role in early inflammatory

syndromes [3-5].

In the brain, NO triggers several temporally cascaded negative effects. Within mi-

nutes to hours, microvascular dysfunction occurs resulting in an inappropriate blood

supply of neurons [6-8]. As a consequence, levels of hypoxia-induced factor (HIF)-2
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alpha increase, somatosensory-evoked potential amplitudes decline, and neuronal (neuron-

specific enolase, NSE) and astrocytic (S100B) destruction markers increase 4 h after an

endotoxin challenge [9]. After about 6 to 8 h, NO starts to affect mitochondrial function

leading to an impaired aerobic glycolysis with energy depletion in neurons [10]. Moreover,

NO is also involved in delayed neuronal apoptosis occurring 24 to 48 h following the insult

[11]. Systemically, excessive NO levels lead to hypotension [12,13], microcirculatory dys-

function [14], and refractoriness to vasopressor catecholamines [15].

Previously, animals treated with selective iNOS inhibitors or transgenic mice deficient

in iNOS had less hypotension and preserved microvascular reactivity under septic con-

ditions [16,17]. Furthermore, iNOS inhibition stabilized also the brain circulation: The

neurovascular coupling was stabilized during an endotoxin challenge using 1,400 W as

a selective iNOS inhibitor [7]. The neurovascular coupling denotes a brain intrinsic

regulative principle, which adapts the local cerebral blood flow in accordance with the

metabolic needs (i.e. activity) of underlying neurons [18]. However, results did not clearly

favor a 1,400-W therapy since 1,400 W had direct negative effects on somatosensory-

evoked potential (SEP) amplitudes [7]. Interestingly, the effect was only seen under LPS

challenge but not under control conditions. Thus, the question arises whether the nega-

tive effect on SEP was simply an adverse effect of the substance 1,400 W itself, or if it was

related to the iNOS inhibition in general. To further address this issue, we studied the ef-

fects of endotoxic shock on SEP in iNOS knock out(−/−) or l-NIL inhibited mice.
Methods
General preparation

All procedures performed on the animals were in strict accordance with the National

Institutes of Health Guide for Care and Use of Laboratory Animals and approved by

the local Animal Care and Use Committee.

Experiments were carried out with wild-type (wt) C57BL6N or iNOS(−/−) C57BL6J
adult male mice (28 to 32 g), as given below in detail. In separate experiments with five

mice in each group, we tested effects of l-NIL in wt mice and stability of recordings in

iNOS(−/−) mice, and studied inflammatory and neurophysiological responses to the

LPS challenge in C57BL6J mice.

Mice were initially anesthetized with 1.5% to 3% isoflurane in a 7:3 N2O/O2 mixture

of gases, tracheotomized, paralyzed with pancuronium bromide (0.2 mg/kg/h), and arti-

ficially ventilated (Minivent, Harvard Apparatus, South Natick, MA, USA). Arterial

blood gas analyses and pH were measured at the beginning and the end of experiments

(blood gas analyzer model Rapidlab 348, Bayer Vital GmbH, Fernwald, Germany)

together with glucose and lactate levels (Glukometer Elite XL, Bayer Vital GmbH,

Fernwald, Germany; Lactate pro, Arkray Inc. European Office, Düsseldorf, Germany).

Glucose was kept in the physiological range by injections of 0.1 ml 20% glucose i.p. as

needed. The right femoral artery and vein were cannulated for blood pressure record-

ing, blood sampling, and drug administration. Rectal body temperature was maintained

at 37°C using a feedback-controlled heating pad (Haake, Karlsruhe, Germany).

The head of the animals was fixed in a stereotaxic frame. After a median incision, the

bone over the left parietal cortex was exposed allowing EEG and transcranial laser-

Doppler flow (LDF) recording. Electric brain activity was recorded monopolarily with
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an active AgCl-electrode over the somatosensory forepaw area and an indifferent AgCl-

electrode placed at the nasal bone [19]. Signals were recorded and amplified (BPA

Module 675, HSE, March-Hugstetten, Germany) and SEP was averaged using the

Neurodyn acquisition software (HSE, March-Hugstetten, Germany). The LDF probe

(BRL-100, Harvard Apparatus, MA, USA) was placed laterally to the cortical electrode.

Approximately 60 min before the stimulation experiments, isoflurane/N2O anesthesia

was discontinued and replaced by intravenous application of α-chloralose (60 mg/kg

bw i.v. bolus) (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). Anesthesia was

continued by continuously administrating chloralose intravenously (30 mg/kg/h).

During experiments, the animals were ventilated with nitrogen/oxygen mixture of 1/1.
Neurophysiological measurements

Somatosensory stimulation was carried out with electrical pulses applied using small

needle electrodes inserted under the skin of the right forepaw (PSM Module 676, HSE,

March-Hugstetten, Germany). The right forepaw was electrically stimulated with rect-

angular pulses of 0.3 ms width and a repetition frequency of 2 Hz for 30 s. The stimu-

lation current was kept constant at 1.5 mA to prevent systemic blood pressure changes

[6,7]. From the averaged typical SEP responses, we calculated the N1-P1 amplitude dif-

ferences and P1 latencies for further statistical comparisons.
Clinical chemistry

At the end of the experiments, blood samples were collected into tubes containing hep-

arin (Ratiopharm GmbH, Ulm, Germany) and immediately centrifuged, and plasma

was stored at −80°C until analyses. The NSE levels were determined using an enzyme-

linked immunosorbent assay (NSE EIA kit; Hoffmann-La Roche, Basel, Switzerland).

Cytokine analysis was performed for IL-6 and IL-10 using commercial rat ELISA kits

(BD Bioscience, Heidelberg, Germany). In addition, CXCL-5, a chemotactic chemokine,

and ICAM-1, an endothelial activation marker, were determined according to the rec-

ommendation of the manufacturer (R&D Systems, Wiesbaden, Germany).

NO metabolite (nitrite and nitrate) concentrations were determined using NOA

Sievers 280 (FMI GmbH, Seeheim, Germany) according to the manufacturer's instruc-

tions. Briefly, NO reaction products in plasma samples were reduced by vanadium

chloride. Resulting gaseous NO was detected by NOA Sievers 280, which was connected

to a computer for data transfer and analysis by NOAWIN32 software (DeMeTec,

Langgöns, Germany).
Study design

Each mouse (10 per group) was subjected to one of the following groups: wt control,

wt + 5 mg/kg LPS (lipopolysaccharide from Escherichia coli, O111:B4, Sigma-Aldrich

Chemie GmbH, Germany), wt + l-NIL + LPS, iNOS(−/−) + LPS. LPS was dissolved in

0.1 ml 0.9% NaCl and injected/infused within 2 to 3 min. The control group received

0.1 ml vehicle. A moderate volume therapy of 0.1 to 0.6 ml/kg/h 0.9% NaCl was

allowed in all groups. In the l-NIL group, l-NIL was injected after neurophysiological

baseline recording and 30 min before sepsis induction at a dose of 5 mg/kg body

weight i.p.
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SEPs, LDF signal, and blood pressure were measured up to 270 min before and after

LPS application. This limited time window was chosen according to previous studies; it

was shown that the cerebral autoregulation stays intact and that blood pressure levels

remain above the lower limit of the cerebral autoregulative range for this whole time

period [20,21].
Statistics

If appropriate, a two-way ANOVA was performed to assess differences within and be-

tween groups. In case of significance, a Fisher post hoc test was applied. If assumptions

of normal distribution and equality of variances could not be assured, a nonparametric

Friedman test was undertaken instead (Statview, SAS, Cary, NC, USA). The significance

level was set to p < 0.05.

The sample size was calculated with G-Power 3.1.3 (Faul, University of Kiel, Kiel,

Germany). Assuming an effect size of 0.7 from previous reports, a total sample size of

40 animals was calculated to determine a significant difference between SEP amplitudes

with an alpha error of 0.05 and a power of 0.95 between the four groups.
Results
General results

Hemodynamic and neurophysiological parameters were stable in wt + l-NIL as well as

in iNOS(−/−) mice over the entire study window of 4.5 h. Responses to LPS did not dif-

fer between C57BL6N or C57BL6J mice (data not shown), and no mouse died from the

slow LPS injection.

Table 1 shows the group averaged data for pO2, pCO2, pH, glucose, lactate, and

hematocrit. Compared to control conditions, significant changes occurred in lactate

and pH levels in the LPS groups. In the LPS groups, lactate levels increased to values

in the range between 3.2 and 3.8 mmol/l but no significant differences were observed

between the LPS groups. pH levels typically decreased in all LPS groups. However,

values reached only significance in the wt + LPS group, whereas the iNOS-blocked

groups showed only a trend to lower levels.

Data from the pro-inflammatory cytokine IL-6, the anti-inflammatory cytokine IL-10,

the chemokine CXCL-5, and the endothelial activation marker ICAM are shown to-

gether with the neuronal cell destruction marker (NSE) as well as nitrate/nitrite levels
Table 1 Group-averaged data for glucose, lactate, pH, pO2, pCO2, and hematocrit for all
groups

Glucose Lactate pH pO2 pCO2 Hematocrit

(mg/dl) (mmol/l) (mmHg) (mmHg) (%)

Control 84 ± 12 1.5 ± 1 7.4 ± 0.03 170 ± 12 34 ± 6 46 ± 4

Wt + LPS 83 ± 14 3.2 ± 2* 7.2 ± 0.2**** 180 ± 20 35 ± 8 45 ± 6

Wt + LPS + l-NIL 90 ± 17 3.2 ± 2* 7.3 ± 0.1 190 ± 25 36 ± 9 49 ± 6

iNOS(−/−) + LPS 78 ± 8 3.8 ± 2* 7.3 ± 0.1 177 ± 19 33 ± 5 47 ± 4

ANOVA ns p < 0.05 p < 0.0005 ns ns ns

Data are given as mean ± standard deviation (SD) together with statistical results. In case of a significant ANOVA, the post
hoc statistical test results to baseline are given as *p < 0.05, ***p < 0.005, ****p < 0.0001. No significant (ns) differences
were seen between sepsis groups.



Table 2 Cytokine, chemokine, and endothelial activation markers together with the
neuronal destruction marker

NSE IL-6 IL-10 ICAM CXCL-5 Nitrate/nitrite

(ng/ml) (ng/ml) (ng/ml) (ng/ml) (ng/ml) (μmol/l)

Control 10 ± 3 1 ± 0.6 0.2 ± 0.1 84 ± 15 0.3 ± 0.3 120 ± 50

Wt + LPS 14 ± 4 (p = 0.08) 224 ± 81**** 3.6 ± 1.5**** 156 ± 20**** 12 ± 6**** 330 ± 130***

Wt + LPS + l-NIL 13 ± 2 175 ± 82**** 1.8 ± 0.7*, ## 141 ± 12**** 7 ± 2****, ## 150 ± 33

iNOS(−/−) + LPS 14 ± 3 243 ± 32**** 2.6 ± 1.5** 145 ± 11**** 6 ± 1****, ## 41 ± 10

ANOVA ns p < 0.0001 p < 0.0005 p < 0.0001 p < 0.0001 p < 0.0001

Cytokine, chemokine, and endothelial activation markers together with the neuronal destruction marker are given as
mean ± SD together with statistical results. In case of a significant ANOVA, the post hoc statistical test results to baseline
are given as **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical significant differences to wt + LPS in the LPS groups are
given as ##p < 0.01. ns, not significant.
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(NO) in Table 2. IL-6, IL-10, and ICAM levels increased significantly without differences

between LPS groups. CXCL-5 was also significantly induced in all LPS groups. However,

iNOS blocking lowered CXCL-5 levels in both groups by nearly 50%. However, NSE levels

did not differ between control group and LPS groups. Nitrate/nitrite levels significantly

increased in the wt + LPS group (330 ± 130 mmol/ml vs. control, 120 ± 50 mmol/ml;

p < 0.001), whereas they did not differ from control in the l-NIL or iNOS(−/−) LPS groups.

Neurofunctional results

Table 3 contains the group data for blood pressure together with the resting LDF signal,

N2-P1 potential amplitudes, and P1 latency. Mean blood pressure decreased signifi-

cantly in the wt + LPS group (56 ± 21 mmHg vs. control, 73 ± 17 mmHg; p < 0.05),

whereas it remained stable in the l-NIL and iNOS(−/−) LPS groups. Moreover, the oc-

currence of cerebral hyperemia was prevented. In the wt + LPS group, the resting cere-

bral blood flow increased by nearly 30% (control, 137 ± 36 U vs. wt + LPS, 180 ± 40 U;

p < 0.0001). N2-P1 amplitudes declined significantly in the wt + LPS group (1.2 ± 1.6 μV

vs. control 5 ± 1.6 μV; p < 0.0001), whereas no significant adverse effect was seen in the

other LPS groups (Figure 1). P1 latencies did not differ between groups. Figure 2 indicates

the results of the resting flow velocity levels in the brain for the different groups. Occur-

rence of LPS-related cerebral hyperemia was prevented by iNOS inhibitory strategies.

Discussion
This is the first report showing a stabilization of neuronal functioning due to selected

iNOS inhibition under an endotoxin challenge: corroborated by iNOS(−/−) experiments,
Table 3 Group-averaged data for mean BP, SEP, P1 latencies, and resting LDFV signal

Mean BP (mmHg) SEP (μV) P1 latency (ms) LDFV (U)

Base End Base End Base End Base End (change to
baseline)

Control 85 ± 5 73 ± 17 6.6 ± 2.3 5 ± 1.6 9.4 ± 0.5 9.1 ± 0.8 144 ± 30 137 ± 36 (−5%)

Wt + LPS 90 ± 10 56 ± 21* 6.6 ± 3.3 1.2 ± 1.6**** 9.3 ± 0.7 9.4 ± 0.1 153 ± 34 180 ± 40*** (+18%)

Wt + LPS + l-NIL 86 ± 8 68 ± 20 6.8 ± 2.2 3.2 ± 3.3 9.4 ± 0.7 9.3 ± 0.1 151 ± 32 137 ± 45 (−10%)

iNOS(−/−) + LPS 92 ± 15 60 ± 21 7.7 ± 2.2 4.7 ± 3.5 9.5 ± 0.6 9.1 ± 0.9 157 ± 30 130 ± 27 (−17%)

ANOVA ns p < 0.05 ns p < 0.001 ns ns ns p < 0.05

Changes to baseline are also given for the LDFV at the end of experiments. Data are given as mean ± SD together with
statistical results. In case of a significant ANOVA, the post hoc statistical test results to baseline are given as *p < 0.05,
***p < 0.005, ****p < 0.0001. No significant differences were seen between sepsis groups.
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Figure 1 Group-averaged data of SEP amplitudes, given as mean ± SD together with statistical
results. Whereas l-NIL and iNOS(−/−) groups presented stable responses, SEP significantly declined in the
untreated LPS group. Data show a neurofunctionally protective effect of specific iNOS inhibition.
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l-NIL stabilized SEP (N2-P1) amplitudes during the first hours of LPS-mediated shock.

Previously reported negative effects of 1,400 W on SEP are, therefore, most likely due to a

substance/drug-specific effect.

We assume that the stabilization of the macro- as well as microcirculation might best

explain the stabilizing effect on SEP amplitudes. Occurrence of cerebral hyperemia and
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Figure 2 Group-averaged data for LDFV responses, given as mean ± SD together with statistical
results. Whereas l-NIL and iNOS(−/−) groups presented stable Laser-Doppler flow velocity (LDFV) levels,
significant hyperemia occurred in the untreated LPS group.
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a progressive decline in blood pressure were effectively blocked in the l-NIL and iNOS

(−/−) group as nitrate/nitrite levels remained in the range of controls. Cerebral

hyperemia is caused by an excessive iNOS-related NO production [22]. NO interferes

with the neurovascular coupling, resulting in an unselected widening of resistance ves-

sels leading to an uncontrolled perfusion of the capillary territory and at least to an in-

appropriate blood supply of active neurons [6,9,23]. Neurons react very sensitively

towards an inadequate perfusion due to their high-energy demand and strong aerobic

metabolism [3]. A mismatch of about 10% to 20% leads to neuronal dysfunction and

protein synthesis disturbances in neurons if it lasts for minutes to hours [24]. Similarly,

the blood pressure decrease is caused by NO-related interference on the arteriolar re-

sistance vessels [9,12,13]. Our data support sepsis guidelines, which focus on an early

hemodynamic stabilization within the first 3 h [25-27].

The role of the microcirculation as a motor of sepsis is further strengthened by an-

other interesting finding of the present study. Neither l-NIL nor iNOS(−/−) influenced
the induction of the pro-inflammatory cytokine IL-6 or the endothelial activation

marker ICAM. The reduced levels of the anti-inflammatory cytokine IL-10 under l-NIL

might indicate - if at all - an induced inflammatory response. Therefore, it appears that

the early inflammatory process itself (cytokine storm, endothelial activation) did not

affect the neuronal function directly. Our findings are in line with reports from

rheumatoid arthritis patients who present a normal cognitive function during relapses

with significantly increased cytokine levels [28,29]. Later on, starting at 24 to 48 h,

cytokines are known to trigger delayed apoptotic pathways [30-32].

The finding of a significantly reduced chemokine CXCL-5 expression indicates re-

duced parenchymal inflammation and, therefore, reduced neuronal stress. CXCL-5 is

significantly induced after cerebral ischemia, indicating a hypoxia-triggered inflamma-

tion in the brain [33,34]. An alternative explanation might be an anti-inflammatory

effect of iNOS blockade due to an inhibition of the NO-related activation of the prosta-

glandin synthesis [35,36]. However, further research is needed to investigate this issue

in more detail.

Conclusions
We conclude that iNOS blocking has a neurofunctionally stabilizing effect in the early

phase of endotoxic shock. Effects are most likely explained by microcirculatory

stabilization, strengthening modern sepsis concepts recommending early hemodynamic

stabilization of septic patients. Additional anti-inflammatory approaches are warranted

to maintain the positive effects and to prevent from other negative effects such as a

cytokine-related delayed neuronal apoptosis.
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