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Abstract

Background: Renal ischemia-reperfusion injury (IRI) is a common cause of acute
kidney injury and a frequent occurrence in critically ill patients. Renal IRI releases
proinflammatory cytokines within the kidney that induce crosstalk between the kidney
and other organ systems. Atrial natriuretic peptide (ANP) has anti-inflammatory as well
as natriuretic effects and serves important functions as a regulator of blood pressure,
fluid homeostasis, and inflammation. The objective of the present study was to
elucidate whether ANP post-treatment attenuates kidney-lung-heart crosstalk in a
rat model of renal IRI.

Methods: In experiment I, a rat model of unilateral renal IRI with mechanical ventilation
was prepared by clamping the left renal pedicle for 30 min. Five minutes after clamping,
saline or ANP (0.2 μg/kg/min) was infused. The hemodynamics, arterial blood gases, and
plasma concentrations of lactate and potassium were measured at baseline and at 1, 2,
and 3 h after declamping. The mRNA expression and localization of tumor necrosis
factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the kidney, lung, and heart were examined.
In experiment II, a rat model of bilateral renal IRI without mechanical ventilation
was prepared by clamping bilateral renal pedicles for 30 min. Thirty minutes after
clamping, lactated Ringer's (LR) solution or ANP (0.2 μg/kg/min) was infused.
Plasma concentrations of TNF-α, IL-6, and IL-1β were determined at baseline and at
3 h after declamping.

Results: In unilateral IRI rats with mechanical ventilation, ANP inhibited the following
changes induced by IRI: metabolic acidosis; pulmonary edema; increases in lactate,
creatinine, and potassium; and increases in the mRNA expression of TNF-α, IL-1β, and
IL-6 in the kidney and lung and IL-1β and IL-6 in the heart. It also attenuated the
histological localization of TNF-α, IL-6, and nuclear factor (NF)-κB in the kidney and lung.
In bilateral IRI rats without mechanical ventilation, ANP attenuated the IRI-induced
increases of the plasma concentrations of potassium, IL-1β, and IL-6.

Conclusions: Renal IRI induced injury in remote organs including the lung and the
contralateral kidney. ANP post-treatment ameliorated injuries in these organs by direct
tissue protective effect and anti-inflammatory effects, which potentially inhibited
inter-organ crosstalk.
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Cytokine; Lung inflammation; Ischemia-reperfusion; Rat
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Background
Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in

critically ill patients. Critically ill patients with AKI generally receive continuous renal re-

placement therapy, but the effects are insufficient to spare them from high mortality [1,2].

The high risk of death from AKI stems from extrarenal complications resulting from inter-

organ crosstalk and multiple organ dysfunction syndrome [2,3]. Renal IRI exemplifies the

pathophysiological significance of increased cytokine levels and enhanced inflammatory re-

sponses [4,5] that injure and inflame remote organs such as the lung [6] and heart [7].

Atrial natriuretic peptide (ANP) has natriuretic, diuretic, and vasodilating properties

and serves important functions as a regulator of blood pressure and fluid volume

homeostasis [8]. ANP increases the glomerular filtration rate (GFR) by dilating afferent

arterioles and constricting efferent arterioles to increase the glomerular capillary hy-

draulic pressure [9]. It has also been found to enhance recovery from renal IRI by in-

creasing the renal medullary blood flow in rats [10]. In a clinical setting, ANP infusion

improves pulmonary capillary wedge pressure and cardiac index in patients with acute

heart failure [11] and preserves renal function after cardiovascular surgery [12-14].

ANP has also been found to confer anti-inflammatory effects by inhibiting nuclear fac-

tor (NF)-κB activation and cytokine production [15-17]. In a recent study by our group,

ANP pre-treatment prevented kidney-lung crosstalk in a rat model of renal IRI [18].

Yet it remains unclear whether ANP post-treatment protects the heart as well as lung

after renal IRI. We hypothesized that the post-treatment might benefit the kidney, lung,

and heart in a general fashion by attenuating inflammation. We divided the experiments

into two parts, I and II. Our hypothesis of experiment I is that unilateral renal IRI induces

inflammation on the contralateral kidney as well as remote organs and ANP post-

treatment attenuates kidney-lung crosstalk by inhibiting expanding inflammation. There-

fore, we examined the effects of IRI-induced inflammation on the contralateral kidney,

lung, and heart in a rat model of unilateral renal IRI with mechanical ventilation and eluci-

dated whether ANP post-treatment attenuates inter-organ crosstalk among the kidney,

lung, and heart by inhibiting inflammation. Further, in experiment II, we adopted a rat

model of bilateral renal IRI to bring our model somewhat closer to clinical reality. Our hy-

pothesis of experiment II is that bilateral renal IRI induces kidney injury accompanied by

increase in circulating cytokines and ANP post-treatment attenuates release of cytokines

from the kidney into circulation. Therefore, we determined plasma cytokine concentration

in the rat model of bilateral renal IRI excluding the effects of mechanical ventilation and sa-

line and elucidated the inhibitory effect of ANP post-treatment on spreading inflammation.
Methods
All the protocols in this study were approved by the Institutional Animal Care Committee

of Tokyo Medical and Dental University (0140245A).
Experiment I

Animal preparation

The animals were handled and cared for in accordance with the National Institutes of

Health guidelines. Thirty-four male Sprague-Dawley rats (body weight 254 to 311 g)

were anesthetized with an intraperitoneal injection of pentobarbital sodium (5 mg/100 g
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body weight). Each animal underwent a tracheostomy and intratracheal cannulation and

was mechanically ventilated (Respirator Model SN-480-7, Shinano Ltd., Tokyo, Japan)

under the following conditions: FIO2 0.21, tidal volume of 10 ml/kg with 5 cmH2O posi-

tive end-expiratory pressure, respiratory rate of 30 to 40 cycles/min. The right carotid ar-

tery was cannulated with a catheter for continuous measurement of the arterial pressure

and heart rate and for intermittent arterial blood sampling. The arterial pressure was mea-

sured with a blood pressure amplifier (AP-641G, SEN-6102M, Nihon Kohden, Tokyo,

Japan) and data acquisition system (PowerLab2/26, ML826, ADInstruments, Bella Vista,

Australia) by connecting the catheter to a transducer and calibrating at zero at the mid-

chest. The right femoral vein was cannulated with a catheter for infusion of saline or

ANP. The ANP was a generous gift from the Daiichi Sankyo Company (Tokyo, Japan).

Renal ischemia-reperfusion

The left renal pedicle was exposed via a midline incision, clamped with a vascular clip

for 30 min, and released. Occlusion was verified visually by the change in the color of

the kidney to a paler hue. After clamp removal, the restoration of the blood flow to the

kidney was confirmed upon the return of the original color. The abdomen was closed

in one layer. The sham surgery consisted of the same procedure, but with no clamping

of the left renal pedicle. This renal ischemia-reperfusion injury is a model of AKI.

Experimental protocol

The rats were randomized to four experimental groups: an 1) IRI + saline group (n = 10),

2) IRI + ANP group (n = 10), 3) sham + saline group (n = 6), and 4) sham + ANP group

(n = 8). All of the animals were mechanically ventilated. From 5 min after clamping

of the left renal pedicle, the IRI + saline and sham + saline groups were infused with

saline for 3 h 25 min at a rate of 6 ml/kg/h. The ANP infusion in the IRI + ANP and

saline + ANP groups was started at the same time point (from 5 min after clamping

of the left renal pedicle) and administered at the same rate and duration (0.2 μg/kg/min

for 3 h 25 min) using saline mixed with ANP dissolved in 2-ml portions of distilled water.

The heart rate, mean arterial pressure, arterial blood gases, and plasma concentrations of

lactate, creatinine, and potassium were measured at baseline and at 1, 2, and 3 h after

declamping. Blood gas analysis was performed on a blood gas analyzer (Radiometer ABL

837, Radiometer Medical ApS, Copenhagen, Denmark). At the completion of the experi-

ment, all of the animals were killed with overdose of pentobarbital. The kidney, lung, and

heart were harvested and either preserved at −80°C until use for the cytokine mRNA ana-

lysis or preserved in formalin until the histologic examination.

Wet/dry ratio of the lung

The wet/dry ratio of the lung is a gravimetric measure of pulmonary edema and an accur-

ate gauge of changes in the lung dry mass [19]. We measured the wet/dry ratio by the

same method reported by Heremans et al. [20] by desiccating the lung at 80°C until a con-

stant weight was obtained. The ratio was calculated as a parameter of lung edema.

RNA extraction and TaqMan real-time PCR

Total RNA was extracted from the kidney, lung, and heart with TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer's instructions. The RNA concentration
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was determined by the absorbance read at 260 nm (GeneQuant 100, GE Healthcare UK

Ltd, Chalfont St Giles, Buckinghamshire, UK). The primers and TaqMan probes for tumor

necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and glutaraldehyde-3-phosphate de-

hydrogenase (GAPDH) mRNA were purchased from a commercial laboratory (Applied

Biosystems, Foster City, CA, USA). The mRNA expressions of TNF-α, IL-1β, and IL-6

were determined by real-time polymerase chain reaction (PCR). cDNA was synthesized

using TaqMan reverse transcription reagents (Applied Biosystems, Roche Molecular

Systems, Inc., Branchburg, NJ, USA) and quantified using a thermal cycler (PC707,

ASTEC Co., Ltd., Minato-ku, Japan). TaqMan real-time PCR was performed using an

ABI 7900HT (Applied Biosystems, Foster City, CA, USA). TaqMan rat GAPDH was

used as an internal control and relative gene expression values were determined using

the 2−ΔΔCT method [21].

TNF-α, IL-6, and NF-κB immunostaining and scoring in the kidney, lung, and heart

Five rats from each group were used for the immunohistochemical examination. The

kidney, lung, and heart were resected, embedded in paraffin, sliced into thin sections,

and immunostained. Anti-TNF-α goat polyclonal antibody (SC-1348, diluted 1:20) and

anti-IL-6 rabbit polyclonal antibody (SC-1265-R, diluted 1:200) were purchased from

Santa Cruz Biotechnology (Dallas, TX, USA). Anti-NF-κB rabbit monoclonal antibody

(1559-1, clone E381, diluted 1:200) was purchased from Epitomics (Burlingame, CA,

USA). The sections were deparaffinized with xylene. For the IL-6 immunostaining, the

sections were heat-treated in a microwave oven in citric acid buffer at pH 6.0 for 20

min and then air-cooled for 20 min. For the TNF-α and NF-κB immunostaining, the

heat treatment was omitted. The subsequent immunostaining procedure was com-

menced by rehydrating the sections with an alcohol series and then treating them for

10 min with dH2O and H2O2 to inactivate the endogenous peroxidase. The antibodies

were then added to the sections in a moisture chamber and reacted at RT for 3 h. After

washing in phosphate buffer solution with Tween20 (PBST) for 30 min, the TNF-α

samples were reacted for 30 min by indirect immunostaining using anti-goat antibody

conjugated with horseradish peroxidase (P0449, diluted 1:30, DAKO, Tokyo, Japan).

The IL-6 and NF-κB samples were visualized using a Novo Link Polymer Kit (RE7280-K,

Leica Microsystems, Tokyo, Japan). After reacting the linker and polymer in the kit

for 30 min each, the slides were visualized with diaminobenzidine, counterstained

with hematoxylin, dehydrated, and cover-slipped. TNF-α, IL-6, and NF-κB expres-

sions were evaluated semi-quantitatively by randomly choosing five areas in each slide

and having them uniformly evaluated in a high-power field (×200) by a pathologist

who had no knowledge of the experimental conditions (one of the authors). Scores of

3, 2, 1, and 0 were respectively assigned to fields with strong, moderate, weak, and

negligible staining for each immunostaining. The level of expression was the mean

value of five fields (TNF-α, IL-6, and NF-κB expression score, respectively).
Experiment II

Thirteen male Sprague-Dawley rats (body weight 327 to 376 g) were anesthetized with

an intraperitoneal injection of pentobarbital sodium (5 mg/100 g body weight). Each

animal was allowed to breathe spontaneously, without mechanical ventilation. The right

carotid artery was cannulated with a catheter and the arterial pressure was measured
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with a blood pressure amplifier as stated above. The right femoral vein was cannulated

with a catheter for infusion of lactated Ringer's (LR) solution or ANP. The bilateral

renal pedicles were clamped with vascular clips for 30 min and released. The rats were

randomized to three groups: 1) IRI + LR group (n = 5), 2) IRI + ANP group (n = 5),

and 3) sham + LR group (n = 3). From 30 min after clamping, the IRI + LR and sham +

LR groups were infused with LR for 3 h at a rate of 6 ml/kg/h. The ANP infusion in the

IRI + ANP group was started at the same time point and administered at the same rate

and for the same duration (0.2 μg/kg/min for 3 h) using LR mixed with ANP dissolved in

2-ml portions of distilled water. The heart rate, mean arterial pressure, arterial blood

gases, and plasma concentrations of lactate, creatinine, and potassium were measured

at baseline and at 1, 2, and 3 h after declamping. The plasma concentrations of TNF-

α, IL-1β, and IL-6 were determined at baseline and at 3 h using the rat ELISA kit

(Quantikinetm TM, R&D Systems, Minneapolis, MN, USA) following the manufac-

turer's instruction. The samples were tested in duplicate.
Statistical analysis

All data are shown as median and interquartile range (IQR). The hemodynamics;

plasma concentrations of creatinine, lactate, potassium, and cytokines; and blood gas

variables were all analyzed by the Kruskal-Wallis test at a fixed time point (3 h after

declamping), as notable time-dependent changes in these parameters were found in re-

peated measures ANOVA for all three groups. The Kruskal-Wallis test was used to

compare the wet/dry ratio, cytokine mRNA expression, and TNF-α, IL-6, and NF-κB

scoring among the four groups. If the result from the Kruskal-Wallis test was signifi-

cant, then the Mann-Whitney U test was similarly applied to analyze each pairing of

groups. A p value of less than 0.05 was considered statistically significant.
Results
Experiment I

Changes in hemodynamic variables and plasma concentrations of creatinine and potassium

IRI did not induce any significant change in the heart rate or mean arterial pressure;

however, IRI significantly (p < 0.05) increased the plasma concentrations of creatinine

and potassium at 3 h. Post-IRI treatment by ANP prevented these changes in the vari-

ables related to renal function caused by IRI, and the values at 3 h in the IRI + ANP

group were significantly lower than those in the IRI + saline group (Figure 1).

Changes in arterial blood gas variables, plasma lactate concentration, and lung wet/dry ratio

IRI induced significant metabolic acidosis at 3 h (p < 0.01, Figure 2) with significantly ele-

vated levels of plasma lactate (p < 0.05, Figure 2). Post-IRI treatment by ANP prevented

IRI-induced metabolic acidosis and plasma lactate elevation. IRI significantly (p < 0.01) in-

creased the lung wet/dry ratio, and ANP prevented this increase, as well (Figure 2).

Cytokine mRNA expression in the kidney, lung, and heart

Unilateral IRI significantly increased the mRNA expressions of TNF-α, IL-6, and IL-1β

in both the ipsilateral kidney (p < 0.05 for IL-6; p < 0.01 for TNF-α and IL-1β) and the

contralateral (right) kidney (p < 0.01 for TNF-α, IL-6, and IL-1β). Post-IRI treatment by



Figure 1 Changes in the HR, MAP, and plasma concentrations of creatinine and potassium during
mechanical ventilation. Values are expressed as median. Vertical lines indicate the interquartile range
(IQR). ANP, atrial natriuretic peptide; HR, heart rate; IRI, ischemia-reperfusion injury (unilateral); MAP, mean
arterial pressure. *p < 0.05, **p < 0.01 vs. the IRI + ANP group; †p < 0.05, ††p < 0.01 vs. the sham + ANP
group; #p < 0.05, ##p < 0.01 vs. the sham + saline group.
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ANP prevented the elevation in all these proinflammatory cytokines at 3 h after IRI

(Figure 3). Furthermore, IRI significantly increased the mRNA expressions of TNF-α,

IL-1β, and IL-6 in the lung (p < 0.01, Figure 4) and those of IL-1β and IL-6 in the heart

(p < 0.01, Figure 4), and ANP prevented these elevations in the expression of the tran-

scripts of proinflammatory cytokines in these remote organs (Figure 4).

Histological detection and localization of TNF-α, IL-6, and NF-κB in the kidney, lung, and heart

TNF-α was detected and localized in the vascular endothelial cells of the kidney, in the

bronchial epithelial cells of the lung, and in the vascular endothelial cells of the heart. IL-6

was detected and localized in most vascular endothelial cells, in a few proximal convoluted

tubules of the kidney, and in the columnar epithelial cells of the bronchioles of the lung

and the vascular endothelial cells of the heart. NF-κB was detected and localized in the

proximal convoluted tubules of the kidney, bronchioles of the lung, and myocardium of

the heart. IRI significantly increased the TNF-α, IL-6, and NF-κB expression scores of the

left (ipsilateral) kidney (p < 0.01) and the TNF-α and NF-κB expression scores of the right

(contralateral) kidney (p < 0.01). Post-IRI ANP treatment prevented all these elevations

(Figure 5). IRI significantly (p < 0.05) increased the TNF-α, IL-6, and NF-κB expression

scores of the lung, and ANP prevented these increases (Figure 6), whereas IRI did not in-

duce significant changes in the TNF-α, IL-6, and NF-κB expression scores in the heart.
Experiment II

Bilateral IRI procedures in the kidney did not change the heart rate, but significantly

(p < 0.05) decreased the mean arterial pressure. IRI increased the plasma



Figure 2 Changes in arterial blood gas variables, lactate concentration, and lung wet/dry ratio
during mechanical ventilation. In blood gas variables and lactate concentration, value are expressed as
median. Vertical lines indicate the interquartile range (IQR). In lung wet/dry ratio, boxes extend from the
25th to 75th percentile; the horizontal line shows the median. Error bars show the minimum and
maximum. ANP, atrial natriuretic peptide; IRI, ischemia-reperfusion injury (unilateral). **p < 0.01 vs. the IRI +
ANP group, ††p < 0.01 vs. the sham + ANP group, ##p < 0.01 vs. the sham + saline group.
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concentrations of creatinine and potassium, and ANP prevented the increase in the

latter (Figure 7). IRI was not found to elicit acidosis by respiratory compensation and

no significant change in arterial blood gas bicarbonate was observed (Figure 8). IRI

also left the plasma lactate concentration unchanged. IRI significantly (p < 0.05) in-

creased the plasma concentrations of IL-1β and IL-6, but not the concentration of

TNF-α, and ANP attenuated the increases in IL-1β and IL-6 in 13 rats (Figure 9).
Discussion
The most compelling findings observed in this rat model of unilateral renal IRI with

mechanical ventilation (experiment I) were that unilateral renal IRI induced inflamma-

tion not only in the ipsilateral kidney but also in remote organs including the contralat-

eral kidney, lung, and heart and ANP post-treatment inhibited inflammation of these

organs. In addition, ANP post-treatment inhibited the renal IRI-induced metabolic

acidosis, pulmonary edema, and increases in the plasma concentrations of lactate, cre-

atinine, and potassium. Although unilateral renal IRI is not the main cause of AKI in

critically ill patients, unilateral renal IRI remains a major problem in surgeries, such as

renal transplantation [22] and juxtarenal and suprarenal abdominal aortic aneurysm re-

pair [23]. The renal function of these patients must be preserved during the periopera-

tive period. We therefore tried to investigate the effects of unilateral renal IRI on the



Figure 3 Comparison of the mRNA expression of cytokines by TaqMan real-time PCR in the kidneys.
ANP, atrial natriuretic peptide; IL-1β, interleukin 1-β; IL-6, interleukin 6; IRI, ischemia-reperfusion injury; LK, left
kidney; RK, right kidney; TNF-α, tumor necrosis factor-α. Boxes extend from the 25th to 75th percentile; the
horizontal line shows the median. Error bars show the minimum and maximum. *p < 0.05, **p < 0.01 vs. the
IRI + ANP group; ††p < 0.01 vs. the sham + ANP group; #p < 0.05, ##p < 0.01 vs. the sham + saline group.
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non-ischemic contralateral kidney, as well as the lung and heart. Renal IRI augmented

the mRNA expressions of TNF-α, IL-1β, and IL-6 in the kidney and lung, and this ef-

fect was inhibited by the ANP post-treatment. Renal IRI also augmented the mRNA ex-

pression of IL-1β and IL-6 in the heart, and the ANP post-treatment again inhibited

the augmenting action. The ANP post-treatment prevented the renal IRI-induced

localization of TNF-α, IL-6, and NF-κB in the kidney and IL-6 and NF-κB in the lung.

Furthermore, in experiment II, the bilateral renal IRI increased the plasma concentra-

tions of IL-1β and IL-6, but not the concentration of TNF-α, and the ANP treatment

30 min after clamping attenuated the increases in IL-1β and IL-6. The plasma TNF-α

concentration might have passed its peak at 3 h. These results corroborate earlier evi-

dence of an ANP-conferred enhancement of recovery from renal IRI in rats [10] and

strengthen evidence favoring ANP as a possible treatment for AKI. In an earlier study

by our group, ANP preserved renal function after suprarenal abdominal aortic cross-

clamping in a dog model approximating ischemic AKI following abdominal aortic

aneurysm repair [24]. In clinical studies, low-dose ANP infusion after cardiovascular

surgery enhanced the renal excretory function, decreased the probability of dialysis,

and improved the dialysis-free survival in ischemic acute renal failure [12-14]. The in-

duction of IRI in the present study led to reduction in MAP in the saline group and LR

group, but not in the sham group or ANP group. The plasma lactate concentration was

also found to increase sharply in the IRI + saline group, but no such increase was ob-

served after ANP treatment. These findings suggest that the administration of ANP

might contribute to prevention of extravasation of the fluid, which resulted in



Figure 4 Comparison of the mRNA expression of cytokines by TaqMan PCR in the lung and heart.
ANP, atrial natriuretic peptide; IL-1β, interleukin 1-β; IL-6, interleukin 6; IRI, ischemia-reperfusion injury; L, lung; H,
heart; TNF-α, tumor necrosis factor-α. Boxes extend from the 25th to 75th percentile; the horizontal line shows
the median. Error bars show the minimum and maximum. **p < 0.01 vs. the IRI + ANP group, ††p < 0.01 vs. the
sham + ANP group, ##p < 0.01 vs. the sham + saline group.

Mitaka et al. Intensive Care Medicine Experimental 2014, 2:28 Page 9 of 17
http://www.icm-experimental.com/content/2/1/28
maintenance of peripheral circulation. Our results showed successful results of ANP

post-treatment in attenuating renal IRI and reducing cytokine mRNA expression in the

kidney, lung, and heart. ANP post-treatment also reduced plasma cytokine (IL-1β and

IL-6) concentrations, and this might be one of the mechanisms explaining the thera-

peutic effect of ANP on remote organ inflammation.

Renal IRI generally leads to outer medullary congestion and hypoxia, conditions that

predispose patients to ischemic injury in the S3 segment of the proximal tubule [25].

ANP increases GFR by dilating the afferent arterioles and constricting the efferent arte-

rioles to increase glomerular capillary hydraulic pressure [9]. The reno-protective effect

of ANP may derive from protection against medullary ischemia via ANP-induced in-

creases in the medullary vasa recta blood flow [10,26].
Renal IRI and inflammation of remote organs

Renal IRI engages the innate and adaptive immune responses and works in conjunction

with cytokine generation within the kidney [27]. Once this process starts, cellular and

soluble mediators injure remote organs such as the lung and heart via organ crosstalk.
Kidney-lung interaction

Renal IRI induced lung inflammation in a mouse model with systemic inflammatory

syndrome and upregulated IL-6 mRNA expression in both the kidney and lung [6].

These findings are consistent with our present results. After renal IRI, we also detected



Figure 5 Evaluation of TNF, IL-6, and NF-κB expressions in the kidney. Upper figures: The evaluation
of tumor necrosis factor (TNF)-α expression in the vascular endothelial cells of the kidney. TNF-α protein
was stained in brown, and the level of TNF-α expression was scored: score 0 (hardly stained), score 1
(weakly stained), score 2 (moderately stained), score 3 (strongly stained). Comparison of the TNF-α
expression scores in the left kidney (LK) and right kidney (RK). ANP, atrial natriuretic peptide; IRI, ischemia-
reperfusion injury. Middle figures: The evaluation of interleukin (IL)-6 expression in the vascular endothelial
cells and proximal convoluted tubules of the kidney. IL-6 protein was stained in brown, and the level of IL-6
expression was scored: score 0 (hardly stained), score 1 (weakly stained), score 2 (moderately stained), score
3 (strongly stained). Comparison of the IL-6 expression scores in the left kidney (LK) and right kidney (RK).
Lower figures: The evaluation of nuclear factor (NF)-κB expression in the proximal convoluted tubules of the
kidney. NF-κB protein was stained in brown, and the level of NF-κB expression was scored: score 0 (hardly
stained), score 1 (weakly stained), score 2 (moderately stained), score 3 (strongly stained). Comparison of the
NF-κB expression scores in the left kidney (LK) and right kidney (RK).
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Figure 6 Evaluation of TNF, IL-6, and NF-κB expressions in the lung. Upper figures: The evaluation of
tumor necrosis factor (TNF)-α expression in the bronchial epithelial cells of the lung. TNF-α protein was
stained in brown, and the level of TNF-α expression was scored: score 0 (hardly stained), score 1 (weakly
stained), score 2 (moderately stained), score 3 (strongly stained). Comparison of the TNF-α expression scores
in the lung. ANP, atrial natriuretic peptide; IRI, ischemia-reperfusion injury. Middle figures: The evaluation of
IL-6 in the columnar epithelial cells of the bronchioles of the lung. IL-6 protein was stained in brown, and
the level of IL-6 expression was scored: score 0 (hardly stained), score 1 (weakly stained), score 2 (moderately
stained), score 3 (strongly stained). Comparison of IL-6 expression score in the lung. Lower figures: The
evaluation of nuclear factor (NF)-κB expression in the bronchioles of the lung. NF-κB protein was stained
in brown, and the level of NF-κB expression was scored: score 0 (hardly stained), score 1 (weakly stained), score
2 (moderately stained), score 3 (strongly stained). Comparison of NF-κB expression score in the lung.
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Figure 7 Changes in the HR, MAP, and plasma concentrations of creatinine and potassium during
spontaneous breathing. Values are expressed as median. Vertical lines indicate the interquartile range
(IQR). ANP, atrial natriuretic peptide; HR, heart rate; IRI, ischemia-reperfusion injury (bilateral); LR, lactated
Ringer's solution; MAP, mean arterial pressure. *p < 0.05 vs. the IRI + ANP group, #p < 0.05 vs. the sham
+ LR group.
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and localized IL-6 in the columnar epithelial cells of the bronchioles of the lung and

the vascular endothelial cells and proximal convoluted tubules of the kidney in our

animals.

The alveolar epithelium has features in common with the renal tubular epithelium,

such as localization of water channels and ion transporters [28]. Mechanisms of renal

IRI-induced lung injury are assumed to include a dysregulation of water clearance, in-

flammation, an innate immune response, proinflammatory cytokines, oxidative stress,

and apoptosis [29].
Figure 8 Changes in arterial blood gas variables during spontaneous breathing. Values are expressed
as median. Vertical lines indicate the interquartile range (IQR). ANP, atrial natriuretic peptide; IRI, ischemia-
reperfusion injury (bilateral).



Figure 9 Changes in plasma concentrations of IL-1β and IL-6 during spontaneous breathing.
ANP, atrial natriuretic peptide; IL-1β, interleukin 1-β; IL-6, interleukin 6; IRI, ischemia-reperfusion injury
(bilateral); LR, lactated Ringer's solution.
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Studies confirming the expression of ANP and its receptors and their variable modes of

regulation in the immune system [30] support the notion that ANP has immunomodulatory

potency. ANP inhibits the activation of NF-κB production in both mouse macrophages and

endothelial cells [15-17]. ANP post-treatment of our experimental animals inhibited the

mRNA expression of TNF-α, IL-1β, and IL-6 in the kidney. The ability of ANP to suppress

the induction of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 may signify a

substantive anti-inflammatory action on the kidney and lung. ANP post-treatment was also

found to inhibit the activation of NF-κB production in the kidney and lung in our study.

These findings suggest that ANP has anti-inflammatory effects on both organs.

Increased capillary endothelial permeability is a major pathologic mechanism of pul-

monary edema in acute lung injury and acute respiratory distress syndrome. Our group

previously reported that ANP improved pulmonary gas exchange by reducing extravascu-

lar lung water in patients with acute lung injury [31] and in a canine model with oleic

acid-induced pulmonary edema [32]. This finding is corroborated by reports that ANP

knockout in mice increases the severity of lung inflammation and vascular barrier dysfunc-

tion caused by bacterial pathogens [33,34]. Increased ANP levels in patients with acute

lung injury [35] may represent an important compensatory mechanism aimed at attenu-

ation of injury and lung barrier dysfunction. Tian et al. [36] recently demonstrated a novel

protective mechanism of ANP against pathologic hyper-permeability and suggested a

pharmacological intervention for the prevention of increased vascular leak via PAK1-

dependent modulation of guanine nucleotide exchange factor H1 activity. The activity of

renal NF-κB appears to increase in the absence of the functional guanylyl cyclase/
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natriuretic peptide receptor-A (GC-A/NPRA) gene 1 and to elicit abnormalities by stimu-

lating the synthesis of proinflammatory cytokines [37]. These findings, taken together,

show that ANP protects the kidney by preventing proinflammatory cytokines via conterre-

gulatory effects on NF-κB signaling.
Kidney-heart interaction

Several inflammatory mediators participate in the pathophysiologic process of cardiore-

nal syndrome [38]. Increased production of inflammatory cytokines may adversely

affect myocardial function. Elevated levels of circulating TNF-α and IL-6 are associated

with the development of congestive heart failure and mortality in congestive heart fail-

ure patients [39,40]. Several different pathways, most notably the activation of inflam-

matory transcription factors and the induction of inflammatory genes and cytokines,

may contribute to heart injury following renal IRI.

Renal IRI induced the mRNA expressions of TNF-α, IL-1β, and IL-6 in the heart, in

our experiments, and ANP post-treatment attenuated the mRNA expressions of the lat-

ter two, IL-1β and IL-6. Yet the localizations of TNF-α, IL-6, and NF-κB in the heart at

3 h in the IRI + saline group were not significantly increased or significantly different

from the localizations in other groups. These findings suggest that the cardiac levels of

TNF-α, IL-6, and NF-κB were not increased in the heart 3 h after renal IRI. It may take

more than 3 h to increase the cardiac levels of cytokines and NF-κB. In experiments

with a rat model of renal IRI, Kelly [7] demonstrated an increase of circulating TNF-α

by 1 h post renal ischemia, a further increase at 2 h, and steady elevation of the cyto-

kine for 24 h. The cardiac levels of immnoreactive IL-1 and TNF-α in the same animals

were elevated at 6, 24, and 48 h after renal ischemia, and echocardiography revealed left

ventricular dysfunction, a likely sign of heart failure, at 48 h after renal IRI. It may take

a longer time for renal IRI to induce hear failure.
Inhibition of inter-organ crosstalk by ANP

It may be difficult to differentiate between inhibition of inter-organ crosstalk and dir-

ect organ protection, given that ANP has now been shown to confer protective effects

on other organs in addition to the established anti-inflammatory effects. We know,

however, that inter-organ crosstalk develops via cellular mediators such as neutrophils,

macrophages, and lymphocytes, and inflammatory cytokines [29]. Matsumura et al.

[41] have reported that ANP modulates the neutrophil functions and exerts protective

effects against the neutrophil-induced endothelial cytotoxity. Chujo et al. [42] have

also shown that ANP significantly inhibits IRI-induced increases in renal cytokine-

induced neutrophil chemoattractant-1, a chemokine responsible for the activation of

neutrophils and for neutrophil chemotaxis to sites of injury. Regarding plasma cyto-

kine concentration which would be the main route of expansion of inflammation,

ANP post-treatment attenuated IRI-induced elevation of the plasma concentrations of

IL-1β and IL-6. We therefore suppose that ANP may both directly and indirectly dis-

rupt the inter-organ crosstalk following renal IRI.

Limitations of this study

There are some limitations to this study. First, in the present study, we have evaluated

the effects of ANP on only renal IRI. Considering that there are multiple causes of AKI
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in critically ill patients (e.g., sepsis, nephrotoxic agents, hypoperfusion, and their com-

bination) other than IRI, we cannot refer to the effects of ANP on AKI caused by other

mechanisms. However, because it was notable that ANP post-treatment was effective to

reduce tissue injury in the lung and kidney both in unilateral and in bilateral renal IRI,

further study is needed to elucidate whether this beneficial effect might be observed in

other pathophysiologic conditions. Second, saline infusion and mechanical ventilation

might be an aggravating factor for organ injury in the present study. Unilateral renal

IRI (experiment I) with mechanical ventilation induced significant metabolic acidosis.

This result may have been due to a decrease in the renal blood flow by the positive

pressure ventilation. Further, the applied tidal volume of 10 ml/kg might be a little too

high to protect against lung injury. Bilateral renal IRI without mechanical ventilation

(experiment II) did not induce acidosis by respiratory compensation, and the arterial

blood gas bicarbonate was maintained by the infusion of LR. These findings suggest

that the mechanical ventilation and saline both worsened the arterial blood gas parame-

ters after the renal IRI. A recent clinical study has actually shown chloride-restrictive

fluid infusion to be significantly associated with a significant decreased incidence of

AKI and a significantly decreased use of renal replacement therapy in critically ill pa-

tients [43]. Therefore, we should consider the possibility that mechanical ventilation

per se, ventilator setting, and type of infusion become exacerbation factors for organ

dysfunction after the renal IRI. Nevertheless, it is noteworthy that ANP post-treatment

has clearly prevented IRI-induced remote organ inflammation even in the condition

with these kinds of aggravating factors.
Conclusions
Unilateral renal IRI with mechanical ventilation induced inflammation not only in the

ipsilateral kidney but also in remote organs including the contralateral kidney, lung,

and heart. ANP post-treatment inhibited renal IRI-induced metabolic acidosis and the

mRNA expression of TNF-α, IL-1β, and IL-6 in the kidney and lung and IL-1β and IL-

6 in the heart. In addition, ANP post-treatment attenuated the IRI-induced increases in

the plasma concentrations of IL-1β and IL-6, as well as the IRI-induced histological

localization of TNF-α, IL-6, and NF-κB in the kidney and lung. These findings show

that ANP conferred a reno-protective effect and anti-inflammatory effect both on the

kidney and on the lung in the rat model of renal IRI. The cardiac levels of TNF-α, IL-6,

and NF-κB were not significantly increased at 3 h after renal IRI, suggesting that renal

IRI-induced heart injury may occur later than lung injury. Further studies are needed

to elucidate the anti-inflammatory effects of ANP on the heart.
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