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Abstract

Background: The mechanisms of sepsis mortality remain undefined. While there is
some evidence of organ damage, it is not clear whether this damage alone is
sufficient to cause death. Therefore, we aimed to examine contribution of organ
injury/dysfunction to early deaths in the mouse abdominal sepsis.

Methods: Female OF-1 mice underwent either medium-severity cecal ligation and
puncture (CLP-Only) or non-lethal CLP-ODam (CLP with cisplatin/carbontetrachloride
to induce survivable hepatotoxicity and nephrotoxicity). In the first experiment, blood
was collected daily from survivors (SUR; CLP-Only and CLP-ODam groups) or until
early death (DIED; CLP-Only). In the second experiment (CLP-Only), early outcome
was prospectively predicted based on body temperature (BT) and pairs of mice
predicted to survive (P-SUR) and die (P-DIE) were sacrificed post-CLP. The overall
magnitude of organ injury/dysfunction was compared in retrospectively and
prospectively stratified mice.

Results: At day 7 post-CLP, survival in CLP-Only was 48%, while CLP-ODam was
non-lethal. In CLP-Only mice within 24 h of death, urea increased to 78 (versus
40 mg/dl in SUR), ALT to 166 (vs. 108 U/l), LDH to 739 (vs. 438 U/l) and glucose
declined to 43 (vs. 62 mg/dl). In CLP-ODam, hypoglycemia was exacerbated (by 1.5-fold)
and ALT and LDH were 20- and 8-fold higher versus DIED (CLP-Only) mice. In CLP-Only,
predicted deaths (P-DIE) were preceded by a significant rise only in cystatin C (268 vs.
170 ng/ml in P-SUR) but not in creatinine and troponin I. Respiratory function of
mitochondria in the liver and kidney of P-SUR and P-DIE CLP-Only mice was not
impaired (vs. controls) and ATP level in organs remained similar among all groups.
Histologic injury scores in the liver, kidney, heart and lung showed no major disparities
among dying, surviving and control mice.

Conclusions: In CLP-Only mice, although the deregulation of parameters indicative of
organ injury/dysfunction was greater in dying versus surviving mice, it never exceeded
the changes in surviving CLP-ODam animals, and it was not followed by histopathological
damage and/or mitochondrial dysfunction. This shows that interpretation of the
contribution of the organ injury/dysfunction to early deaths in the CLP model is not
straightforward and depends on the pathophysiological origin of the profiled
disturbances.
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Background
Sepsis syndromes belong to the most challenging conditions in contemporary critical

care. In young immuno-competent subjects, sepsis onset is typically associated with

hyperinflammation reflected by a strong and simultaneous release of pro- and anti-

inflammatory mediators in the blood [1]. In contrast, in immune-compromised pa-

tients, e.g., older, with comorbidities and/or after major trauma, the ‘cytokine storm’

is frequently replaced by a severe immunosuppression from the very onset of the dis-

ease [1]. Each of the above reactions, however, can disrupt the functional homeosta-

sis of vital organs including the lungs, heart, liver and kidney [2]. As sepsis evolves,

these initial perturbations may, especially in the case of an over-excessive cytokine

burst, quickly evolve into the multiple organ dysfunction syndrome (MODS, also re-

ferred to as multiple organ failure or MOF). In the ICU patients with sepsis, MODS

frequently develops as a secondary complication with fatal outcome [3]: e.g., in the

PROWESS trial, MODS was one of the three most common causes for sepsis-related

death [4,5].

However, despite its lethality, the exact pathogenesis of MODS remains unclear [6].

While an early-onset (days 0 to 3) MODS secondary to acute insults such as sepsis and

trauma has been observed in patients, MODS typically develops in a more protracted

fashion and over the course of several days [7-11]. The exact sequence of the early

events that lead to organ failure and its contribution to acute deaths await in-depth

characterization [2]. For example, it was demonstrated that non-infected traumatized

patients without signs of MODS and patients with early-onset MODS demonstrated

the same risk of lethal outcome [2,9]. In septic patients, the most recent in-depth ana-

lysis demonstrated that MODS is often a key contributor to mortality but not through

a rapid and overt failure but rather through a protracted process of the gradual decline

in the organ function [5]. Similarly, in septic children, early-onset MODS is associated

with much milder morbidity and mortality compared to secondary MODS [12]. This

evidence invites a speculation that in young and uncomplicated septic subjects, the life-

threatening impairment of multiple organs (i.e. an overt MOF stage) will not be

reached immediately but at later time points. Relatively minimal histopathological

changes (and/or lack thereof ) in organs of acutely dying septic patients indirectly sup-

port such a notion: in the recent studies by the Hotchkiss group, autopsies performed

on patients who died in the intensive care unit (ICU) detected only trivial signs of

apoptosis/necrosis in the heart, kidney, liver and lung [13,14]. Notably, findings from

few existing (clinically relevant) mouse models of trauma and sepsis parallel, at least

partly, the aforementioned clinical findings. For example, trauma/hemorrhage followed

by cecal ligation and puncture (CLP)-sepsis in the mouse did not induce marked

changes in the lung and kidney morphology for up to 96 h post-CLP [15] and pulmon-

ary injury did not contribute to death in another acute CLP study [16].

Given that the role of MODS in acute septic deaths is not fully understood, this study

aimed to investigate how the magnitude and dynamics of deregulated homeostasis in

major organs is related to early outcome in young outbred mice suffering from polymi-

crobial abdominal sepsis. Specifically, we chose several most commonly used parame-

ters characterizing selected aspects of cellular injury and/or function of vital organs

and compared them among CLP mice either dying or surviving the acute phase of sep-

sis and surviving septic animals with added organ damage.
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Methods
Animals

Female, 3- to 4-week-old, outbred OF-1 mice (Himberg, Austria) were used for all ex-

periments (the exact n/group distributions are specified in legends to the figures). After

arrival, all animals were allowed to acclimatize to their new environment for at least

1 week. Mice were kept together in groups of five per type III cage, housed on a

12 h light-dark diurnal cycle with controlled temperature (21°C to 23°C) and pro-

vided with standard rodent diet and water ad libitum throughout all experiments.

Cages were enriched with houses, wood wool for nesting as well as wooden boards,

tunnels and small blocks for gnawing (Abbedd Lab & Vet Service, Vienna, Austria)

to facilitate natural behavior prior to and throughout the experimentation.
Ethics statement

All animal procedures were approved by the Viennese (Austria) legislative committee

(Animal Use Proposal Permission no 007602/2007/10) and conducted according to the

National Institutes of Health guidelines.

Given the severity of our study, we employed a maximally diligent observation of all

mice to minimize suffering within the frames of the experimental design. All mice en-

rolled in the study were kept in the institute's small in-house animal facility to enable

optimal and frequent monitoring: the overall health status was checked by trained pro-

fessionals (i.e. DVMs and/or MDs) at least three times per day and more (typically

every 2 to 3 h) whenever an animal's condition deteriorated (defined by, among other

parameters, decreased activity, progressing hypothermia, rapid weight gain) [17,18].

Given that the objective of our study was to compare the magnitude and dynamics of

organ injury/dysfunction in early murine sepsis between acutely dying and long-term

surviving mice, the time of septic death was a critical endpoint. In survival studies, as

recommended by Nemzek et al. [18], we followed a precise, empirically established set

of guidelines that offers a feasible window of opportunity (due to the frequent monitor-

ing) for euthanasia in moribund mice at the earliest possible time simultaneously

retaining the 100% certainty of their impending demise (to eliminate the type I error).

Specifically, mice were killed only upon signs of imminent death (i.e. inability to main-

tain upright position/ataxia/tremor and prolonged/deep hypothermia and/or agonal

breathing) by using deep inhalation anesthesia (isoflurane) followed by an overdose of

barbiturate (thiopental, Thiopental Sandoz®; Sandoz International GmbH, Holzkirchen,

Germany).
Sepsis model

All mice were subjected to CLP surgery according to the original protocol by Wichterman

et al. [19] with specifications made elsewhere [20]. We relied on the CLP model given that

it closely mimics many aspects of the inflammatory, hemodynamic and metabolic re-

sponses observed in human sepsis originating from the abdominal compartment [1,21].

Furthermore, the presence of infectious focus (i.e. necrotic cecum) in CLP mice is in line

with the clinical scenario given that a continuous septic focus is frequently present in sep-

tic patients despite attempts at appropriate source control [22]. We purposely used

healthy, young (4 weeks old) outbred mice: this allowed us (1) to directly examine the link
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between the development of organ injury/dysfunction in the consistently robust hyperin-

flammatory environment [23] and (2) to avoid strong confounding factors such as age

[24] and comorbidities [25].

Two CLP protocols were used in the study: (1) medium-severity (18G needle; hence-

forth referred to as CLP-Only mice, n = 83) to reach an approximate 30% to 50% mor-

tality and (2) low-severity (23G needle; used only in the CLP-ODam subgroup of mice;

the ODam component explained below) protocol with mortality typically not exceeding

10% by day 5 post-CLP. In brief, after opening the abdominal cavity via midline laparot-

omy, the cecum was exposed, ligated and punctured twice. After repositioning of the

cecum, the abdomen was then closed with two single button sutures and Histoacryl®

skin adhesive (B. Braun, Aesculap, Tuttlingen, Germany). Starting 2 h post-CLP, all

mice received subcutaneous wide-range antibiotic therapy (25 mg/kg imipenem,

Zienam®; MSD, Lucerne, Switzerland) and fluid resuscitation (1 ml Ringer's solution)

with analgesia (0.05 mg/kg buprenorphine, Buprenovet®; Bayer, Maharashtra, India)

twice daily (in approximately 12 h intervals) for five consecutive days post-CLP.

Non-lethal model of CLP and CCl4/cisplatin

To induce an acute but survivable hepatocyte injury and kidney dysfunction in CLP mice

(with low mortality; see the next section), a single dose of carbon tetrachloride (CCl4;

0.3 μl/g of body weight) and cisplatin (1 μg/g of body weight) was administered into the

open abdominal cavity at the time of CLP surgery; we will henceforth designate this group

as CLP-ODam. The subjective ODam acronym signifies the presence of tissue injury

caused to the liver and kidney by exposure to CCl4/cisplatin, although this is simultan-

eously accompanied by functional deterioration of those organs [26-28]. Of note, the in-

jury and dysfunction recorded in the CLP-ODam mice (although exacerbated compared

to CLP-Only) are not equivalent to an overt organ failure post-CLP.

Three CLP-ODam mice were sampled at 24, 48 and 72 h post-CLP and were

followed for 7 days after CLP (and euthanized on day 8 post-CLP) to ensure the CLP-

ODam setup was not lethal in the acute phase of sepsis. CCl4 is a potent hepatotoxin

commonly used to induce cirrhosis in mouse models of liver disease [29,30], while cis-

platin is a chemotherapeutic agent with strong nephrotoxic side effects [31] utilized in

mouse models of acute kidney injury (AKI) [26,32]. Furthermore, both agents trigger a

strong release of inflammatory cytokines (e.g. TNFα, IL-1β, IL-6) [27,28]. We chose the

liver and kidney as the target organs given that their injury/dysfunction is commonly

investigated in septic patients and CLP mice [6,33,34]. Of note, after selection of the

non-lethal CCl4/cisplatin dose, the number of mice enrolled to the surviving CLP-

ODam group was kept to minimum (i.e. three, but sampled sequentially over 3 days)

given the severe burden of the combined CLP/CCl4/cisplatin challenge.

A complete illustration of severe CCl4/cisplatin-induced damage to the liver and kid-

ney is provided by previous studies [6,26-28,30,32]; our objective was not an in-depth

characterization of organ damage in the CLP-ODam mice but to use the obtained mea-

surements (of the selected circulating parameters in the first experiment) for compari-

son purposes. Therefore, in agreement with the ARRIVE guidelines [35] and 3R

(Reduce, Replace, Refine) principle, we elected not to include a separate CLP-ODam

group in the second experiment, in which additional circulating markers of organ dys-

function were analyzed (i.e. cystatin C, troponin I) and histopathological comparison of
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organ injury was performed (based on the prospective outcome stratification; see

below).

Experimental setup and outcome stratification protocols

Depending on the needle gauge, each CLP mouse was assigned to either (1) CLP-Only

or (2) CLP-ODam. In the CLP-Only group, two outcome stratification approaches were

applied. In the first experiment, mice were monitored for 14 days for outcome and

retrospectively stratified into those that died (henceforth referred to as DIED) and

those that survived (henceforth referred to as SUR) within the first 5 days after CLP

(Figure 1A). In this (non-sacrificed) group, 20 μl of blood were collected daily for the

first 5 days post-CLP to measure selected metabolic and organ injury/dysfunction pa-

rameters (i.e. urea, lactate dehydrogenase, alanine transaminase and glucose). Of note,

creatinine and cystatin C were not measured in those mice given the severe restriction

in the sampled blood volume.

In the CLP-ODam group, mice underwent CLP combined with application of CCl4
and cisplatin (see above). Of note, the combination of CCl4/cisplatin and CLP was

chosen given that it created an environment in which development of organ-injury was

additionally promoted via the sepsis-triggered inflammation. Sham surgeries were not

performed to reduce the total number of animals.

In the second experiment, early outcome was prospectively predicted via repeated

rectal body temperature (BT) measurements using the Fluke 52 Series II thermometer

(Fluke, Everett, WA, USA). For example, whenever BT of a given mouse decreased

below 28°C (recorded at least at two sequential measurements), the animal was

assigned to predicted to die (within the next 24 h) group (henceforth referred to as

P-DIE). In the prospective stratification approach, mice were sacrificed in pairs. Specific-

ally, each P-DIE mouse was then sacrificed together with one CLP mouse predicted to

survive (henceforth referred to as P-SUR) that was defined by BT ≥ 35°C (Figure 1B). A

separate group of healthy control mice (no CLP) was also sacrificed as reference. Blood

and organs (kidney, liver, heart and lung) were collected for further analysis.

Blood sampling

In the first experiment, irrespective of the group, 20 μl of blood were drawn daily for 5

days or until death, including one extra sample at 6 h post-CLP. Blood was collected by

puncturing the facial vein (vena submandibularis) with a 23-gauge needle as previously

described [36]. All samples were collected with a pipette rinsed with ethylenediaminetetra-

acetic acid (EDTA) (diluted 1:50) and immediately diluted 1:10 in PBS. After centrifuga-

tion (1,000×g, 5 min, 22°C), 180 μl of plasma was removed and stored at −80°C until

further analysis.

In the second experiment, the whole blood was collected at sacrifice from the inferior

vena cava with addition of sodium citrate (9:1 ratio vol/vol, blood:citrate). After centri-

fugation (2,500×g, 5 min, 22°C), undiluted plasma was removed and stored at −80°C for

further analysis.

Metabolic and organ injury/function parameters

In the first experiment (28 day follow-up), urea nitrogen (urea), glucose, lactate de-

hydrogenase (LDH) and alanine transaminase (ALT) were analyzed in plasma samples
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with Cobas c111 analyzer (Roche, Basel, Switzerland). The lower detection limit for

urea was 3 mg/dl, for glucose 1.98 mg/dl, for LDH 10U/l, and for ALT was 2U/l. In the

second experiment (BT-based outcome stratification), cystatin C (Biovendor, Karasek,

Czech Republic) and troponin I (Life Diagnostics, West Chester, PA, USA) were ana-

lyzed in plasma (obtained from undiluted whole blood samples) using ELISA kits ac-

cording to manufacturer's recommendations. Creatinine was analyzed with Cobas c111

analyzer using the same plasma samples. The lower detection limit for cystatin C was

0.04 ng/ml, for troponin 0.156 ng/ml. In the context of the liver, it must be noted that

ALT and LDH are indicators of hepatocyte and general (LDH) tissue injury, thus, they

do not per se define the level of liver dysfunction (although the latter effect typically de-

velops once a pronounced injury occurs - as in CLP-ODam mice). Given that the pa-

rameters we recorded in this study are indicative of either organ injury or (dys)

function, we refer to those data by the ‘organ injury/dysfunction’ acronym.

ATP measurement

In the second experiment (BT-based outcome stratification), the lateral liver lobe, the en-

tire heart and the left kidney were immediately snap-frozen in liquid nitrogen after dissec-

tion. Eighty milligrams of each dissected organ was homogenized (RW 1 basic

homogenizer, IKA, Wilmington, NC, USA) with three volumes (1:4 wt/vol) of Tris-HCl

buffer (20 mM Tris, 135 mM KCl, pH 7.4). Nine hundred microliters of boiling 100 mM

Tris/4 mM EDTA buffer (pH 7.75) were added to 100 μl homogenate (liver, kidney, heart).

Homogenates (performed as duplicates) were incubated for 2 min at 100°C and then cen-

trifuged (1,000×g) for 1 min. The supernatants were transferred to a fresh tube and stored

on ice until measurement. ATP content from the supernatant was detected according to

the manufacturer's manual (ATP Bioluminescence Assay Kit CLS II, Roche, Switzerland).

Mitochondrial respiration

In the second experiment (BT-based outcome stratification), respiratory parameters of

mitochondria were monitored using a high-resolution respirometer (Oxygraph-2k,

Oroboros Instruments, Innsbruck, Austria). Liver/kidney homogenate was incubated in buffer

containing 105 mM KCl, 5 mM KH2PO4, 20 mM Tris-HCl, 0.5 mM EDTA and 5 mg/ml fatty

acid-free bovine serum albumin (pH 7.2, 25°C). State 2 respiration was stimulated by

addition of 5 mM glutamate/5 mM malate or 10 mM succinate and 1 ng/ml rotenone.

Transition to state 3 respiration was induced by addition of adenosine diphosphate (ADP,

1 mM). Respiratory control (RC), characterizing coupling between oxidation and phos-

phorylation, was determined as the ratio of respiration rates of state 3 to state 2. Mito-

chondrial respiration in the uncoupled state (total capacity of the respiratory chain) was

measured by titration of CCCP in steps of 0.5 μM. Effect of exogenous cytochrome c

(2.5 μM) on the respiration rate was used to estimate the permeability of the outer mito-

chondrial membrane. All reagents were obtained from Sigma-Aldrich (Vienna, Austria).

Histology and histology scores

In the second experiment (BT-based outcome stratification), histologic slides of organs

were stained using hematoxylin-eosin (HE) - and TdT-mediated dUTP-biotin nick end

labeling (TUNEL) staining method. All slides were evaluated and scored (blindly) by

the pathologist (DG Remick).



Figure 1 Survival curve and outcome prediction based on body temperature. (A) Seven-day mortality
in 4-week-old OF-1 mice subjected to CLP-Only and daily low-volume blood sampling for days 1 to 5 post-CLP.
(B) Experimental setup for prospective BT-based outcome prediction. A septic mouse was predicted to die
(P-DIE) whenever its BT dropped below 28°C within days 1 to 5 post-CLP. Upon detection, each P-DIE mouse
was always sacrificed with a matching predicted to survive (P-SUR) mouse (i.e. with BT ≥35°C). (C) ROC curve
and corresponding area under the curve (AUC) for the prediction of outcome based on BT in acute CLP sepsis
(days 1 to 5 post-CLP). BT ≤28°C identified dying mice with 94% specificity, while a BT ≥35°C identified surviving
mice with 100% specificity. The BT cutoffs for outcome prediction utilized in this study were predetermined
based on the internal BT measurement database compiled in previous studies.
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Statistical analysis

The 28-day survival curve was plotted using the Kaplan-Meier method. Accuracy of

outcome prediction via BT was analyzed using the receiver operating characteristic

(ROC) defined by the area under the curve (AUC) (Figure 1C). The accuracy of the

ROC-AUC test is defined as excellent from 0.9 to 1, good from 0.8 to 0.9, fair from 0.7

to 0.8, poor from 0.6 to 0.7, and <0.6, not useful. To ensure maximal data
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reproducibility, all experiments were conducted in small animal groups (typically 10 to

20 per cycle). All data are presented on the original scale and the level of significance

was set at p < 0.05.

In the first experiment (Figures 2 and 3), a high number (n = 83) of enrolled mice (in

the CLP-Only group) was required to enable reliable DIE vs. SUR comparison over the

5-day post-CLP period (the DIE subgroup at 72 and 96 h time points was the main lim-

iting factor). Initially, n = 10/DIE group at each time point was set to detect a minimal

inter-group SUR/DIE difference of approximately 20% to 30% (at α = 0.05, β = 0.8). The

interim data analysis after five CLP runs showed futility of the n = 10 goal for DIE mice

at the 96 h time point (due to low late mortality) as well as acceptable data distribution

and variability for the pre-96 h time points. Consequently, the study was stopped after

reaching n DIE = 7 (at 72 h) and n DIE = 3 (at 96 h) and n DIE = 9 at 72 h in the

inverted comparison approach (Figure 3).

In the second experiment, n ≥ 10 in the P-DIE and P-SUR groups (i.e. at least ten

pairs) was set for comparison of the organ dysfunction score (Table 1) and n ≥ 5/group

for comparison of other parameters (Figures 4, 5, 6). The n inconsistency among indi-

vidual tables and figures is due to the fact that not all shown parameters could have

been measured in each sacrificed mouse and/or due to infrequent errors at sample col-

lection and analysis.

All organ parameter values were tested for normality before further analysis. Detailed

n distribution per group is defined in the legend to each figure/table. Subgroup com-

parisons with at least three groups were made using either one-way ANOVA and

Bonferroni for selected pairs as post hoc test (parametric data) and Kruskal-Wallis and
Figure 2 Retrospective comparison of organ function between dying and surviving septic mice
using CLP as reference point. Plasma levels of (A) ALT (B) LDH (C) urea and (D) glucose in mice that
died (CLP-Only DIED) or survived (CLP-Only SUR) post-CLP were compared to surviving CLP-ODam mice
(CLP-ODam SUR). For (A) to (D) in CLP-Only: at 6 h, DIED n = 45 and SUR n ≥ 36; at 24 h, DIED n = 37 and
SUR n = 38; at 48 h, DIED n = 13 and SUR n ≥ 37; at 72 h, DIED n = 7 and SUR n ≥ 34; at 96 h, DIED n = 3,
SUR n = 36. In CLP-ODam SUR n = 3 at all measured time points (24, 48, 72 h); *p < 0.05 between CLP-Only
DIED and CLP-ODam SUR. Dotted lines indicate normal range. Data points shown as mean ± SD.



Figure 3 Retrospective comparison of organ function between dying and surviving septic mice
using death as reference point. Plasma levels of (A) ALT, (B) LDH, (C) urea and (D) glucose in mice
subjected to CLP were compared between those that either died (CLP-Only DIED) or survived (CLP-Only
SUR) and additionally to surviving CLP-ODam mice (CLP-ODam SUR). For (A) to (D) in the CLP-Only group:
at 72 h, DIED n = 9 and SUR n = 35; at 48 h, DIED n = 33 and SUR n ≥ 30; at 24 h, DIED n = 42 and SUR
n = 40. In the CLP-ODam SUR group, an average value of all combines measurements (i.e. taken at 24, 48
and 72 h post-CLP; n = 9) is shown at the 24 h prior death time point; *p < 0.05 between CLP-Only DIED
and SUR #p < 0.05 between CLP-Only DIED and CLP-ODam SUR. Dotted lines indicate normal range. Data
points shown as mean ± SD.
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Dunn's post hoc test for selected pairs (non-parametric data). Differences between

DIED and SUR at a specific time point were analyzed using unpaired Student's t-test

(with Welch correction for unequal variances whenever necessary) or Mann-Whitney

U test for those parameters with non-Gaussian distribution. All statistical analyses and

graphics were made with GraphPad (San Diego, CA, USA).
Results
Retrospective and prospective comparison of outcome-dependent responses in acute

CLP sepsis

The study was divided into two experimental parts. In the first (retrospective) experi-

ment, female OF-1 mice were subjected to CLP, sampled for blood (without sacrifice,

see ‘Blood sampling’ section) and observed for 28 days for outcome. Forty-eight percent

of those animals were alive at the end of the observation period (Figure 1A) and all
Table 1 Pathology score in organs

Group Heart Kidney Lung Liver

CLP-DIED 0 0.5 0.5 0.8

CLP-SUR 0 0.3 0.1 0.1

CONTROL 0 1.0 0 0.8

Scored organs were harvested from CLP-Only mice stratified using the prospective BT-based prediction of outcome and
sacrificed on days 1 to 3 post-CLP. P-DIE and P-SUR mice were sacrificed in pairs (n = 11/each group) whenever a P-DIE
mouse was identified. N = 7 in control (healthy individuals). A five-level scoring scale was used: 0 = normal, 1 = minor,
2 = medium, 3 = advanced and 4 = very severe injury.



Figure 4 Comparison of organ function between dying and surviving septic mice using prospective
stratification of outcome. Mice were subjected to CLP, monitored for BT and stratified into either predicted
to die (P-DIE) or predicted to survive (P-SUR). Upon identification, P-DIE and P-SUR mice were always sacrificed
in pairs additionally compared to the healthy animals (CTRL). (A) Cystatin C: P-DIE n = 11, P-SUR n= 14 and CTRL
n = 14. (B) Creatinine: P-DIE n = 7, P-SUR n = 10 and CTRL n = 13. C. Troponin I: P-DIE n = 7, P-SUR n = 7 and CTRL
n= 10. *p< 0.05 versus all other groups. Solid horizontal bars indicate mean ± standard error of means (SEM).
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data obtained between days 1 and 5 post-CLP were retrospectively compared based on

the actual outcome.

In the second (prospective) experiment, we intended to prospectively predict the out-

come of CLP-induced sepsis based on specific BT cutoff values given that in septic

mice, a strong decrease of BT is among the distinct signs of upcoming death. There-

fore, a group of female OF-1 mice was subjected to CLP, monitored BT for first 5 days

(post-CLP) and divided into sub-groups with predicted outcome; the prospective identi-

fication approach is presented in Figure 1B schematic. We had established an excellent

accuracy of BT to predict outcome (AUC = 0.93) by ROC analysis using our previously

compiled internal BT measurement database: identification of P-DIE mice (BT ≤ 28°C)



Figure 5 Comparison of mitochondrial function between dying and surviving septic mice using
prospective stratification of outcome. Mice were subjected to CLP, monitored for BT and stratified into
either predicted to die (P-DIE) or predicted to survive (P-SUR). Upon identification, P-DIE and P-SUR mice were
always sacrificed in pairs and additionally compared to the healthy animals (CTRL). (A,B) Succinate state II. (C,D)
Succinate state III. (E,F) Succinate RC. For all parameters: P-DIE n = 5, P-SUR n = 6 and CTRL n = 5. Solid horizontal
bars indicate mean ± SEM.
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had 94% specificity, while identification of P-SUR mice (BT ≥ 35°C; at least for the next

24 h) displayed 100% specificity (Figure 1C).

In this study, an average of 23% of mice per day did not meet the low/high

temperature cutoffs for the outcome prediction. The exact percentages of animals >28°C

and <35°C for each sampling time point post-CLP were: 50% at 6 h, 27% at 24 h, 12% at

48 h, 18% at 72 h and 8% at 96 h.

CLP as reference point: temporal profiles of organ injury/dysfunction in dying and

surviving septic mice

As polymicrobial sepsis unfolds, homeostasis of vital organs becomes deregulated. By

using our serial low-volume sampling approach (first experiment) with CLP as the ref-

erence point, we followed temporal fluctuations of circulating organ function/injury pa-

rameters in DIED and SUR septic (CLP-Only) mice juxtaposing them with the readouts

from non-lethal CLP-ODam mice.

In the CLP-Only group, a consistent deterioration in all parameters was recorded in

DIED versus SUR mice. At 48 h post-CLP (the most pronounced DIED/SUR



Figure 6 Comparison of mitochondrial ATP level between dying and surviving septic mice using
prospective stratification of outcome. Mice were subjected to CLP, monitored for BT and stratified into
either predicted to die (P-DIE) or predicted to survive (P-SUR). Upon identification, P-DIE and P-SUR mice
were always sacrificed in pairs (days 1 to 3 post-CLP) and additionally compared to the healthy animals
(CTRL). (A) Liver. (B) Heart. (C) Kidney. For all parameters: P-DIE n = 4, P-SUR n = 6 and CTRL n = 2. Solid
horizontal bars indicate mean ± SEM.
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separation), circulating ALT in DIED was 2.3-fold higher (vs. SUR) (235 vs. 102 U/l),

LDH was 3.7-fold higher (1,028 vs. 276 U/l) and urea was 1.7-fold higher (67 vs.

39 mg/dl), while blood glucose decreased by approximately 30% (44 vs. 69 mg/dl)

(Figure 2).

We wanted to gain more insight into the biological relevance of the recorded differ-

ences upon acute septic outcomes, therefore, we compared temporally measured values

(at 24, 48 and 72 h post-CLP) obtained from CLP-ODam survivors to the corresponding
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measurements obtained in DIED and SUR mice from the CLP-Only cohort. The deterior-

ation of readouts in surviving CLP-ODam mice was always greater than in SUR and either

equaled or further exceeded changes recorded in DIED CLP-Only. In CLP-ODam mice,

ALT was 5- to 30-fold higher (up to 4,717 U/l), LDH 8- to 11-fold higher (up to 7,300 U/l)

while urea and glucose were approximately equal to the values measured at 24 to 72 h

time points in DIED mice of the CLP-Only group (Figure 2A-D).

Death as reference point: pre-lethal evolution of organ injury/dysfunction in acute CLP

Given that organ dysfunction/injury in DIED mice was more pronounced at many but

not all time points compared to SUR, we next aimed to characterize the dynamics of

progressive pre-lethal organ impairment in acute CLP. Therefore, we used the time of

impending death as the reference point to inversely plot changes in the recorded pa-

rameters between dying and surviving CLP-Only mice (and also to compare them to

CLP-ODam survivors).

Within 48 h of death, apart from an approximately 30% increase in urea (51 vs.

40 mg/dl), none of the parameters recorded in the DIED group was higher than in cor-

responding SUR CLP-Only mice. However, a significantly higher deterioration of all pa-

rameters was recorded within 24 h of death: ALT increased by 54% (167 vs. 107 U/l),

LDH by 68% (739 vs. 439 U/l), urea by 86% (76 vs. 40 U/l), while glucose decreased by

30% (62 vs. 43 mg/dl). Next, the last pre-lethal (i.e. at 24 h time point) measurements

in DIED CLP-Only were compared to the averaged value (i.e. using the combined 24, 48

and 72 h post-CLP measurements) of each respective parameter measured in CLP-ODam

survivors. The comparison demonstrated that in CLP-ODam survivors, ALT was 15-fold

higher (167 vs. 2,447 U/l), LDH was 5-fold higher (739 vs. 3,281 U/l) while urea and glu-

cose were approximately similar to CLP-Only mice that died (Figure 3A-D).

By using the ROC analysis, we also estimated the capacity of the last pre-death mea-

surements (i.e. within 24 h of death) to predict early CLP outcome (Table 2). Only the

urea (and blood urea nitrogen (BUN); Additional file 1: Figure S1) demonstrated a good

(AUC = 0.85) separation between DIED and SUR datasets: 40% of CLP mice would have

been identified as predicted to die without inclusion of false positive SUR mice.

Outcome-dependent profiling of kidney and cardiac muscle tissue injury in acute CLP

based on the BT prediction

In the next step, we aimed to characterize the magnitude of kidney dysfunction and

cardiac muscle tissue injury in fully symptomatic mice dying of sepsis. We assessed cre-

atinine and cystatin C as markers for renal glomerular filtration rate and troponin I as
Table 2 Capacity to predict outcome in acute CLP sepsis

Parameter AUC Cutoff Specificity (%) Sensitivity (%)

Urea 0.85 77 mg/dl 100 40

Glucose 0.78 30 U/l 100 25

LDH 0.68 1,320 U/l 100 17

ALT 0.68 365 U/l 100 7

CLP-Only mice were never sacrificed but sampled daily for blood between days 1 to 5 post-CLP and followed for 28 days.
For ROC analysis, parameter values recorded within 24 h of death (occurring anytime between days 1 and 5 post-CLP)
and from mice that lived until day 28 post-CLP were used. Specificity was set to 100% to identify only mice predicted to
die without committing the type I error (i.e. an erroneous inclusion of P-SUR animals). ROC calculation was based on:
n = 42 for mice that died within days 1 to 5 and n = 40 for mice that survived until day 28 post-CLP.



Drechsler et al. Intensive Care Medicine Experimental  (2015) 3:12 Page 14 of 21
marker for cardiac muscle tissue injury. In CLP-Only mice predicted to die, circulating

cystatin C rose by approximately 1.6-fold (692 vs. 170 ng/dl) (p < 0.05) while creatinine

was not higher than SUR (and control) animals (Figure 4A,B). Troponin I levels did

not differ among P-DIE, P-SUR (CLP-Only) and healthy control groups (Figure 4C). To

comply with the three Rs principle, a comparison to CLP-ODam survivors was not per-

formed (explained in the ‘CCl4/cisplatin model’ section).
Outcome-dependent profiling of renal and hepatic mitochondrial respiratory activity in

acute CLP based on the BT prediction

Pronounced organ failure is typically preceded by more subtle metabolic changes at the

cellular level. To investigate the cellular energy homeostasis in CLP-induced sepsis, we

compared the outcome-dependent activity of the mitochondrial respiratory electron

transport chain in septic mice. Specifically, we assessed state 2/state 3 respirations and

RC in the presence of succinate as well as ATP level in organs collected from P-DIE

and P-SUR CLP-Only mice (and healthy control).

In the liver and kidney, succinate state 2 and 3 did not differentiate between P-DIE,

P-SUR and control mice (Figure 5A,B). Similarly, RC was virtually identical among

groups, irrespective of the outcome and organ (Figure 5C).

Next, a direct measurement of ATP was performed in the liver, heart and kidney of

CLP-Only mice predicted to either die or survive (and healthy control). ATP concentration

was virtually identical among all three groups in each examined organ (Figure 6A-C).
Acute CLP did not induce prominent pathomorphologic changes in organs

In the final investigative step, organ samples collected from CLP-Only mice were sub-

jected to histologic evaluation for detection of pathomorphologic signs of organ dam-

age. Based on the comparison of combined pathology scores, there were no distinct

signs of organ injury in neither of the examined groups (Table 1). Representative micro-

graphs of the examined organs are shown in Figure 7. Similarly, the TUNEL assay re-

vealed only trivial changes: only isolated apoptotic cells in the lungs and liver of septic

mice were observed (Additional file 2: Figure S2).
Discussion
Overall, given the absence of cellular respiratory/energy disturbances and histopatho-

logical damage as well as the relatively mild exacerbation of organ injury/dysfunction

(as measured by selected circulating parameters), this study strongly cautions against

reflexive interpretation of organ deregulation as the main culprit of early deaths in the

young outbred CLP female mice. The factual contribution of the recorded organ in-

jury/dysfunction to early CLP mortality strongly depends on the pathophysiological and

immuno-inflammatory context in which those detrimental changes occurred.

To investigate early organ dysfunction/injury in sepsis, this study integrated a number

of innovative design elements. We simulated the routine daily blood monitoring and

treatment of hospitalized septic patients (by using broad-range antimicrobial treatment,

fluid resuscitation and analgesics). The CLP severity level was carefully set to recapitu-

late the mortality of patients suffering from abdominal sepsis (30% to 50%) [37]. This is

important given that both the untreated systemic infection as well as models with



Figure 7 Comparison of pathomorphologic changes mitochondrial function between dying and
surviving septic mice using prospective stratification of outcome. Mice were subjected to CLP, monitored
for BT and stratified into either predicted to die (P-DIE) or predicted to survive (P-SUR). Upon
identification, P-DIE and P-SUR mice were always sacrificed in pairs (days 1 to 3 post-CLP) and
additionally compared to the healthy animals (CTRL). HE-staining of (A) lung, (B) liver, (C) kidney and
(D) heart was performed. P-DIE and P-SUR n = 11 and CTRL n = 7. Representative photographs are
shown (original magnification ×10).
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excessive severity may strongly skew the model towards the more pronounced organ

damage and artificially pre-program the outcome [1]. Furthermore, we used two strati-

fication approaches: an outcome-dependent retrospective [24,25] and BT-based pro-

spective one [38] - both allow a comparison between confirmed dying and surviving
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CLP mice (see the stratification section in ‘Methods’) instead of the typical approach

that compares septic and control (healthy) mice.

In the retrospective stratification approach, we first compared 5-day profiles using CLP

as the reference point. While a statistically significant separation of four circulating pa-

rameters was recorded between DIED and SUR mice, this difference was not consistent at

all time points. For example, ALT and LDH separation was greatest at 48 h post-CLP,

while urea increase and glucose decrease began early and remained constantly separated.

The delay observed in ALT and LDH dynamics is consistent with our recent post-

traumatic sepsis study, which demonstrated the greatest difference in a combined organ

score between DIE and SUR mice at 48 h post-CLP [24]. In two rodent studies, liver dys-

function in abdominal sepsis was described as an early event and signs of acute hepatic

failure coincided with early deaths [34,39]. Specifically, Recknagel et al. using a rat model

of fecal peritonitis demonstrated that sepsis-related hepatic malfunction (already present

at 6 h post-challenge) was more severe in animals predicted to die [39]. Thanks to the

low-volume sampling technique [36], we also analyzed data by using the day of death as

the reference point. This approach enabled us to profile dynamic parameter changes to-

wards the approaching death - similar to deteriorating ICU septic patients in whom the

onset of sepsis is typically unknown. It was striking to observe that the separation of DIED

vs. SUR mice became clear only within the last 24 h (prior to death); no signs of differen-

tial organ deterioration were apparent at earlier time points.

Yet, the above findings did not resolve the main question: i.e. to what extent the re-

corded level of exacerbation of organ injury/dysfunction was responsible for the acute

mortality. We attempted to address it, at least partly, by comparing CLP-Only to mild

CLP with administered CCl4 and cisplatin to provoke an added exacerbation of organ

injury/dysfunction (see respective sections in ‘Methods’). Remarkably, although organ

injury and glycemic deregulation in septic ODam mice either approximately equaled

(based on urea and glucose) or dramatically exceeded (based on ALT and LDH) the

ones recorded in DIED CLP-Only mice, they did not lead to death. It must be noted

that comparison of those two experimental setups (i.e. CLP-Only and CLP-ODam) is

not ideal considering the dissimilar release mechanism of the measured biomarkers:

pronounced hepatocyte (cirrhotic) necrosis caused ALT/LDH secretion in CLP-ODam

mice [26], while their release in sepsis (i.e. CLP-Only) can be attributed to circulatory

disturbances (e.g. decreased arterial hepatic blood flow) rather than necrosis/apoptosis

[1]. Nevertheless, two assumptions can be risked based on the above data. First, the

pathophysiological origin of the damage (e.g. presence of comorbidity) can dramatically

alter the circulation dynamics of a given organ injury/function parameter(s) in the CLP

model (and sepsis in general). Second, even when the elevation of those parameters is

very high, it should not be automatically judged as indication of a lethal organ failure

and the main cause of early death in CLP sepsis. A recent study by Peng et al. [40]

demonstrated a similar ‘mismatch’ phenomenon: an improved survival in antibiotic-

treated CLP (24 to 28 weeks old) rats coincided with a much higher severity of AKI

(defined by RIFLE score) compared to rats with milder AKI but an exacerbated mortal-

ity. In related examples, a trichostatin A-dependent improvement of CLP-induced hep-

atic injury in C57BL/6 mice did not increase their survival, and a similar lack of

survival advantage was true in the CORTICUS trial septic patients in whom hydrocorti-

sone treatment strongly attenuated organ injury [41].
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To gain a deeper insight into the severity of organ dysfunction/injury in our medium-

severity CLP sepsis model, we next employed a prospective BT-based stratification that

allowed autopsy and examination of tissue histology and mitochondrial energy metabol-

ism in organs. In acute sepsis, factors like pulmonary damage, reduction of cardiac output

and impaired myocardial contractibility may lead to shortage of oxygen and consequently

to a failure of mitochondrial respiration and/or tissue energy status (tissue ATP level) in

major organs [42,43]. Yet, the role of mitochondrial dysfunction in the septic organ failure

and subsequent death is unclear [43,44]. In our study, we did not observe any disturbances

in mitochondrial respiration and energy status in the examined organs (i.e. liver, heart,

kidney); the sick mice, regardless whether P-DIE or P-SUR, were undistinguishable from

the healthy subjects. The unaltered ATP level in the hearts of septic mice is in line with

their stable level of circulating troponin I - an established marker of myocardial tissue in-

jury and prognosticator of mortality in severe sepsis patients [45,46]. The histological as-

sessment of the organs demonstrated only random alterations (accompanied by only

sporadic apoptosis) further reinforcing the perception that the recorded exacerbation in

circulating markers in P-DIE (vs. P-SUR), although statistically significant, was not imme-

diately indicative of a lethal organ failure in the young OF-1 mice. Of note, the autopsied

organs were harvested from fully symptomatic animals within the hours of their demise

(i.e. by prospective BT-based stratification), thus, maximizing the probability of detect-

ing signs of structural damage in the examined tissues.

The issue of kidney (dys)function in sepsis models draws special attention. In sepsis,

renal blood flow and microcirculation become impaired leading to an acute tubular in-

jury, cell death and kidney shutdown [47]. In the ICU patients with sepsis and/or

MODS, the presence of AKI strongly and independently correlates with exacerbated

mortality [48]. In rodents, the CLP model has been frequently shown to produce AKI

demonstrable both on functional and structural level [49-53]. In contrast to those stud-

ies, we did not observe any kidney injury in the young OF-1 females based on circulat-

ing creatinine and histologic examinations. Yet, compared to survivors, pre-lethal

measurements in mice dying within the next 24 h (identified by pro-and retrospective

stratification) demonstrated a consistent increase in two other markers: blood urea

(and BUN) and cystatin C. Notably, these findings are virtually identical with the most

recent study published by Craciun et al. [54], who compared kidney dysfunction in 8-

week-old female outbred ICR mice stratified into dying and surviving cohorts (based

on circulating IL-6). For example, BUN/urea from the cited study showed a similar pre-

dictive potential for early CLP deaths to the one we recorded (AUC = 0.85; Additional

file 1: Figure S1 and Table 2); in both studies, this phenomenon was true despite nega-

tive creatinine readouts. This collectively suggests that while a certain level of renal

dysfunction indeed develops, those changes do not appear as the key causal factor in

early CLP deaths. Furthermore, and in parallel to clinical findings [55,56], it becomes

obvious that creatinine alone does not qualify as an optimal marker for detection of

AKI in the mouse, while cystatin C appears to be useful [53,56,57]. Finally, it is also

suggestive that the mouse strain heavily influences the magnitude, severity and the fac-

tual contribution of AKI to outcomes in experimental sepsis. Best to our knowledge,

only inbred [49,51,53,58,59] but not outbred mouse strains were shown to display

patient-like AKI alterations. This is consistent with the occurrence (or absence) of

CLP-induced acute lung injury (ALI): we recently showed that outbred ICR mice do
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not develop significant lung injury [16], while others produced ALI in inbred BALB/c

and C57/BL/6 strains [58,60].

The most important shortcoming of our study is that we did not assess all building

blocks of clinically defined MODS (e.g. acute respiratory distress, hypotension, dimin-

ished cardiac output). Due to obvious technical limitations, we were able to focus only

on selected aspects of organ injury/dysfunction and supplementary studies are neces-

sary to expand onto those omitted elements. In consequence, our preclinical study is

not definite and, furthermore, it is not our intention to imply that organ dysfunction

developing in septic patients should be discounted as the main contributor to their

mortality. The main strength of this study lies elsewhere: it strongly cautions that find-

ings from numerous preclinical experiments, due to their varying design, are prone to

severe misinterpretations [61]. In other words, we believe that preclinical studies con-

ducted in young and healthy mice tend to over interpret statistically significant, but

relatively mild and not instantly life-threatening changes in organ function/injury as:

(1) the leading cause of septic death, and/or (2) the key life-saving mechanism of action

behind beneficial effects of tested therapeutics.
Conclusions
It is clear that the dynamics of organ dysfunction/injury and its response to treatments

profoundly differ between young mice without underlying comorbidities and their aged

and disease-burdened counterparts as well as between the inbred and outbred lineages.

The past year has brought about a heated discussion regarding the true utility of mouse

critical care disease models [62,63]. Among other things, this discussion has stressed that

the mistrust of data from sub-optimally matched/designed experiments can also easily en-

compass relevant preclinical studies given that recognition of the various design flaws is

not easy and immediate [61,64,65]. Therefore, we believe that the degree of the interpret-

ational skepticism applied to the mouse organ dysfunction-related experiments should be

proportional to the distance separating their study design quality from the clinical reality.

Additional files

Additional file 1: Figure S1. Comparison of BUN elevation between dying and surviving CLP mice. (A) Plotted
dots represent blood urea nitrogen (BUN) values taken from mice within 24 h of death (occurring anytime
between days 1 and 4 post-CLP; right scatter) and from mice that lived until day 28 post-CLP (left scatter). Surviving
n = 40; dying n = 42. (B) Predictive capacity of BUN for outcome by ROC curve assessed by measurements taken
within 24 h of death in the acute phase of CLP sepsis (days 1 to 4 post-CLP). Each dot represents a single mouse.
Surviving n = 40; dying n = 42. Solid horizontal lines represent mean ± SD. The two dotted horizontal lines
represent 95% CI. *p < 0.05.

Additional file 2: Figure S2. Comparison of apoptosis in different organs between dying and surviving septic
mice using prospective stratification of outcome. Mice were subjected to CLP, monitored for BT and stratified into
either predicted to die (P-DIE) or predicted to survive (P-SUR). Upon identification, P-DIE and P-SUR mice were
always sacrificed in pairs (days 1 to 3 post-CLP) and additionally compared to the healthy animals (CTRL). TUNEL-
staining of (A) lung, (B) liver, (C) kidney and (D) heart was performed. P-DIE and P-SUR n = 11 and CTRL n = 7.
Representative photographs are shown (original magnification ×10). Arrow in (A) indicates an infrequent apoptotic cell.
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