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Abstract

Background: The pressure-recording analytical method is a new semi-invasive
method for cardiac output measurement (PRAM). There are no studies comparing
this technique with femoral artery thermodilution (FATD) in an infant animal model.

Methods: A prospective study was performed using 25 immature Maryland pigs
weighing 9.5 kg. Fifty-eight simultaneous measurements of cardiac index (CI) were
made by FATD and PRAM at baseline and after return of spontaneous circulation.
Differences, correlation, and concordance between both methods were analyzed.
The ability of PRAM to track changes in CI was explored with a polar plot.

Results: Mean CI measurements were 4.5 L/min/m2 (95 % CI, 4.2–4.8 L/min/m2;
coefficient of variation, 27 %) by FATD and 4.0 L/min/m2 (95 % CI, 3.6–4.3 L/min/m2;
coefficient for variation, 37 %) by PRAM (difference, 0.5 L/min/m2; 95 % CI for the
difference, 0.1–1.0 L/min/m2; p = 0.003; n = 58). No correlation between both
methods was observed (r = 0.170, p = 0.20). Limits of agreement were −2.9 to 4.
0 L/min/m2 (−69.9 to 84.9 %). Percentage error was 80.6 %. Only 26.1 % of data
points lied within an absolute deviation of ±30° from the polar axis.

Conclusions: No correlation nor concordance between both methods was
observed. Limits of agreement and percentage of error were high and clinically not
acceptable. No concurrence between both methods in CI changes was observed.
PRAM is not a useful method for measurement of the CI in this pediatric model of
cardiac arrest.

Keywords: Pressure recording analytical method, Cardiac index, Children, Cardiac
output, Cardiac arrest, Infant animal model

Background
Cardiac output (CO) is a parameter that evaluates global hemodynamic function. Its

measurement is useful for diagnosis and for monitoring critically ill patients [1]. Early

identification of important cardiovascular derangements can trigger promptly life sup-

port maneuvers which may avoid progression to cardiac arrest (CA) [2]. Asphyxia and
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other respiratory conditions are common causes of cardiac arrest in children [3]. Fol-

lowing an asphyxial event with sudden hypercapnia and hypoxia, several hemodynamic

changes have been described [4]. Initial transient tachycardia with arterial hypertension

was followed in the next minutes by progressive bradycardia and hypotension with low

CO, pulmonary hypertension, tissue hypoxia, and lactic acidosis.

There are several invasive and noninvasive methods of measuring CO [5–15]. After

recovery of spontaneous circulation (ROSC), it is of paramount importance to achieve

an adequate hemodynamic status in order to protect the brain and organs from hypo-

perfusion [16]. Postresuscitation myocardial dysfunction (PRMD) is the most important

aspect of postarrest shock and was first described by Laurent et al. [17]. Echocardiog-

raphy is a useful tool to detect PRMD [5, 18]. However, it has some drawbacks, as for

example, a trained operator is needed, and measurements are intermittent. In the set-

tings where ecocardiography is not available, other cardiac output measurement devices

may be useful to manage PRMD.

Less invasive methods for measuring cardiac output have been developed and vali-

dated in adults [5], and some of them have also been studied in children [7–13]. Con-

versely, nowadays, there is no continuous, reliable, and minimally invasive method for

measuring cardiac output in children [5].

Femoral artery thermodilution (FATD) is a less invasive method that allows continu-

ous CO measurement and calibration by transpulmonary thermodilution (TD), which

has shown an acceptable reliability [7]. However, FATD needs a specific expensive cath-

eter, and in hemodynamically unstable patients, it requires frequent recalibrations to

obtain accuracy. For these reasons, it has not been in widespread use. Non invasive

methods based in impedance, electrical velocimetry, ultrasound or ultrasound dilution

have several limitations: intermittent measurements, operator dependency [5, 9, 10],

lack of reliability [11–15], complexity and price [9]. Pulse contour analysis devices are

based in the arterial pulse wave analysis and have the advantage of utilizing a preexist-

ing arterial line, and most of them do not require external calibration. However, none

of these methods has proven to be reliable in children [8].

Pressure recording analytical method (PRAM) is an invasive continuous (beat to

beat) method based on the analysis of the morphology of both the pulsatile and con-

tinuous components of the arterial pressure waveform, at a higher sampling frequency,

than the other pulse contour analysis technologies [19].

Previous studies have found a good correlation and concordance between PRAM and

other methods for the measurement of cardiac output in animal models [20] and adults

[21]. Nevertheless, some other studies have shown discordant results [22–25]. There

are very few studies that have analyzed the utility of this technique in children and re-

sults are nonconcordant [14, 15, 26].

The objective of this study was to analyze the correlation, concordance, and the

trending ability between pressure-recording analytical method and femoral artery ther-

modilution in a pediatric animal model of asphyxial CA.

Methods
The experimental protocol was approved by the local Institutional Ethics Committee

for Animal Research (permit number: 2013/0140). European and Spanish guidelines for

ethical conduct in the care and use of experimental animals were applied throughout
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the study. The experiments were performed in the Department of Experimental Medi-

cine and Surgery, Gregorio Marañon University Hospital, Madrid, Spain. All efforts

were made to minimize suffering.

Twenty-four healthy 2- to 3-month-old Maryland pigs with a mean weight of 9.1 kg

(95 % CI, 8.2–9.9 kg) participated in the study. Food was withdrawn the night before,

although water was provided ad libitum. Initial anesthesia was performed with intra-

muscular administration of ketamine and atropine, followed by propofol, fentanyl, and

atracurium for oral endotracheal intubation with a cuffed tube. Mechanical ventilation

was provided by a Servo 900C (Siemens-Elema AB, Solna, Sweden) with 20 breaths per

minute, tidal volume of 10 ml/kg, FiO2 of 35 %, and positive end-expiratory pressure

(PEEP) of 3 cmH2O. Tidal volume was adjusted to achieve an end-tidal CO2 (EtCO2)

from 33 to 35 mmHg and PaCO2 from 35 to 45 mmHg. Sedation and muscle relax-

ation (propofol 10 mg/kg/h, fentanyl 10 mcg/kg/h, and atracurium 2 mg/kg/h intraven-

ous continuous infusion) was maintained throughout the procedure, in order to avoid

the presence of spontaneous respiration. Monitoring included ECG, peripheral arterial

hemoglobin oxygen saturation (Visconnet monitor, RGB Madrid, Spain), and the re-

spiratory volumes and pressures, FiO2 and EtCO2, by means of a spirometer connected

to the endotracheal tube and an S5 monitor (Datex Ohmeda, Madison, USA). A 4-F

PiCCO catheter was inserted into the femoral artery to measure the blood pressure and

CO by means of a femoral arterial thermodilution system (PiCCO, Pulsion Medical

Systems, Munich, Germany). A Baxter Truwave PX-600 F transducer (Baxter Edwards,

Irvien,CA, USA) was connected to the PRAM monitor (MostCare; Vytech Health, Pa-

dova, Italy). Both monitors were connected to the same femoral artery catheter using a

three-way stopcock, as has been previously described [21]. A 5-F catheter was placed

through the external jugular vein to measure the central venous pressure. The asphyx-

ial cardiac arrest model has been described elsewhere [4]. Briefly, it mimics a hypoxic

cardiac arrest, as occurs after an apnea, for example. When baseline data were col-

lected, an intravenous bolus of atracurium was administered and CA was induced by

disconnection from the respirator for at least 10 min. After this time, CA (defined as a

mean arterial pressure less than 25 mmHg) was confirmed and then cardiopulmonary

resuscitation (CPR) was started. CPR was performed as described elsewhere [4]. If

ROSC was achieved, animals were observed without any intervention for 60 min, and

sacrificed by the administration of a sedative overdose and the intravenous injection of

potassium chloride on completion of the experiment.

Comparison between FATD and PRAM

Cardiac output measurements were performed simultaneously by means of FATD and

PRAM. The data recorded by the PRAM monitor (MostCare; Vytech Health, Padova,

Italy) included cardiac index (CI), stroke volume index (SVI), systemic vascular resist-

ance index (SVRI), and stroke volume variation (SVV). The data recorded by FATD

(PiCCO, Pulsion Medical System, AG, Munich, Germany) included CI, SVRI, SVI, and

SVV.

Intermittent CO and related parameters after thermodilution were obtained with

FATD at baseline and 15, 30, and 60 min after ROSC (ROSC15’, ROSC30’, ROSC60’, re-

spectively). Thermodilution was performed by the injection of 5 mL of ice-cold saline
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into a central vein over about 3 s. In each moment, two consecutive injections were

completed in an interval of 30 s between each, approximately. If the series of CI mea-

surements presented a discrepancy higher than 10 %, repeated injections were adminis-

tered until satisfactory measurements were obtained. Beat to beat CO was obtained

from PRAM by connecting the monitor to the femoral artery catheter using a three-

way stopcock, as described above. Arterial pressure transducer system was zeroed at

the midaxillary line. Two PRAM-CI measurements were registered simultaneously over

the time when the FATD thermodilution was performed. The mean of the two mea-

surements was considered for comparison. Measurements of the systolic arterial blood

pressure with a difference higher than 10 % between FATD and PRAM were rejected.

As recommended by the manufacturer, measurements with PRAM with a maximal

pressure/time ratio (DP/dt) higher than 1.7 at baseline were also discarded because of a

potential resonance of the waveform. Since the animal weight was lower than 20 kg,

the “pediatric patient” mode was selected in the device.

Statistical analysis

The sample size was adjusted to comparable comparison studies [14, 20–23]. No for-

mal power analysis was calculated. The statistical analysis was performed by using the

SPSS (version 16.0). An analysis was completed of the bias, correlation, and concord-

ance between the measurements taken by FATD and PRAM, after checking the normal

distribution of the sample with the Kolmogorov-Smirnov test. The coefficient of vari-

ation for both methods was calculated. The paired Student’s t test was selected to com-

pare means and Spearman’s test to analyze correlations. Non-parametric Wilcoxon

rank test and Pearson’s test were preferred when the variables did not adjust to the nor-

mal distribution. The Bland and Altman method [27] was used to compare the results

of the different measurement techniques, calculating the mean (bias) ± standard devi-

ation (as a measure of precision) of the differences between the values obtained with

each method. The differences between each pair of values were plotted over the average

for each pair. Limits of agreement (LoA) were calculated as the mean bias ± 1.96 times

the standard deviation. The LoA expressed as a percentage were calculated regarding

the values measured with the FATD method. As recommended previously [28], the per-

centage error was calculated as the LoA of the bias divided by the mean CI of both

methods. A percentage error higher than 30 % was considered as clinically not accept-

able. Differences were considered significant at a p value less than 0.05.

A polar plot was built to test the ability of PRAM to track changes in CI, as suggested

elsewhere [29]. Briefly, polar plots have been recently proposed as a statistical method

to compare CO monitor’s trending ability to a reference standard [29]. Polar plots in-

clude the direction and magnitude of changes. For this reason, they overcome the defi-

ciencies of concordance analysis. A polar plot is a graph where vectors are represented.

The vectors are defined by an angle and a size. The angle corresponds to the deviation

from the perfect concurrence in tracking changes between the reference and the test

method (that would be 0°). The size depends on the magnitude of the change and on

the relationship between the change in CO from the two methods.

Changes in CI between consecutive pairs of thermodilution and PRAM measure-

ments were analyzed. Data points representing changes <10 % of the mean CI (changes
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lower than 0.45 L/min/m2 in our study) were excluded for the analysis. Good concur-

rence was considered if 95 % or more of the points laid within an absolute deviation of

±30° from the polar axis, as previously recommended [14, 29].

In order to explore the differences between CI, SVI, and the heart rate (HR) detected

by each monitor, a secondary analysis ad hoc was performed. The HR that the PRAM

device was using at each moment in each subject to estimate CI was calculated by

using the formula (CI*1000)*SVI−1. A comparison between calculated HR with the HR

measured by the FATD monitor was performed by a paired Student’s t test.

Results
Fifty-eight pairs of measurements were obtained from 24 piglets and 12 piglets (50 %)

achieved ROSC. Figure 1 represents the changes in CI, SVI, SVRI, and SVV measured

at each of the study time points.

Cardiac index

On combined analysis of all the paired measurements, the mean CI measurements

were 4.5 L/min/m2 (95 % CI, 4.2–4.8 L/min/m2; coefficient of variation, 27 %) by FATD

and 4.0 L/min/m2 (95 % CI, 3.6–4.3 L/min/m2; coefficient for variation, 37 %) by

PRAM (difference, 0.5 L/min/m2; 95 % CI for the difference, 0.1–1.0 L/min/m2; p =

0.003; n = 58). No correlation between both methods was observed (r = 0.170, p = 0.20).

When comparing the measurements at each of the moments (Fig. 1a), differences were

observed at ROSC15’ (p = 0.004) and at ROSC30’ (p = 0.01) and trends towards statisti-

cally significant differences at ROSC60’ (p = 0.07).

Moderate correlations were observed at ROSC30’ (r = 0.618, p = 0.043).

Fig. 1 Evolution of cardiac index (a), stroke volume index (b), systemic vascular resistance index (c), and
stroke volume variation (d) throughout the experiment, measured by femoral artery thermodilution (FATD),
and the pressure-recording analytical method (PRAM). *p value <0.05
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The Bland Altman plot showed no agreement between the PRAM and FATD

methods (Fig. 2a), with an overall percentage error of 80.6 %. The bias was 0.5 L/min/

m2 (7.4 %), with a lower LoA of −2.9 and an upper LoA of 4.0 L/min/m2 (−69.9 to

84.9 %). The agreement at each of the four time points was similar (Table 1).

Stroke volume index

The overall mean SVI was 30.4 mL/m2 (95 % CI, 28.6–32.2 mL/m2) measured by FATD

and 31.2 mL/m2 (95 % CI, 27.3–35.1 mL/m2) by PRAM (difference, −0.8 mL/m2; 95 %

CI for the difference, −4.1–2.5; p = 0.62; n = 58). Moderate correlation was found (r =

0.552, p < 0.001). When comparing the measurements at each of the moments (Fig. 1b),

differences were observed at baseline (p = 0.04) and at ROSC30’ (p = 0.03). Moderate

correlation was observed only at baseline (r = 0.553, p = 0.005).

Systemic vascular resistance index

The value for SVRI, on combined analysis of all measurements, was found to be lower

using FATD: 1412 dyn*s*cm−5*m−2 (95 % CI, 1273–1561 dyn*s*cm−5*m−2) than when

using PRAM: 1701 dyn*s*cm−5*m−2 (95 % CI, 1549–2025 dyn*s*cm−5*m−2), (difference,

−288 dyn*s*cm−5*m−2; 95 % CI for the difference, −497–79 dyn*s*cm−5*m−2; p = 0.003;

n = 58). No correlation was observed (r = 0.173, p = 0.19). There were significant

Fig. 2 Bland and Altman plot differences between the cardiac index (a), stroke volume index (b), systemic
vascular resistance index (c), and stroke volume variation (d) values obtained with femoral artery
thermodilution (FATD) and the pressure-recording analytical method (PRAM)
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differences on comparing the two methods at ROSC15’ (p = 0.02) and ROSC30’ (p =

0.04) (Fig. 1c). No correlations were observed.

Stroke volume variation

Figure 1d shows the changes in the SVV. The value for SVV measured by FATD, using

all measurements, was 17.6 % (95 % CI, 16.0–19.2 %), compared to 15.5 % (95 % CI,

13.0–18.1 %) by PRAM (difference, 2.1 %; 95 % CI for the difference, −0.6–4.7 %; p =

0.13; n = 58). Weak correlation was found (r = 0.269, p = 0.04). The differences between

the two methods were statistically significant at baseline (p = 0.02). No correlations

were detected specifically at any study point.

Concordance of SVI, SVRI, and SVV

The Bland-Altman plots showed no agreement between FATD and PRAM for SVI,

SVRI, and SVV (Fig. 2), with similar results at each of the four study points (Table 2);

LoA were consistently higher than 30 % (SVI, 87 to −115 %; SVRI, 118 to −178 %; SVV,

149 to −140 %, respectively).

Table 1 Cardiac index measurements agreement analyzed by Bland-Altman’s approach at each
study moment

Cardiac index FATD-PRAM (L/min/m2) N Bias 95 % CI LoA high (%) LoA low (%) % error

Baseline 24 −0.4 −1.1 to 0.3 2.9 (67.4) −3.7 (−97.7) 89.2

ROSC15’ 11 1.8 1.2 to 2.4 3.9 (78.8) −0.3 (−3.6) 48.3

ROSC30’ 11 1.0 0.4 to 1.6 2.9 (63.5) −0.9 (−19.6) 45.3

ROSC60’ 12 0.9 −0.2 to 1.9 4.7 (82.7) −2.9 (−58.9) 87.3

FATD femoral arterial thermodilution, PRAM pressure recording analytical method, N sample size, Bias mean of the
differences between both methods, 95 % CI 95 % confidence interval, LoA (%) limit of agreement expressed as absolute
value and as the percentage of the reference method (FATD), % error percentage error, ROSC recovery of
spontaneous circulation

Table 2 Bland-Altman’s analysis of the agreement of hemodynamic measurements at each study
moment

FATD-PRAM N Bias 95 % CI LoA high (%) LoA low (%)

SVI baseline (mL/m2) 24 −6.8 −12.4 to −1.2 20.8 (70.7) −34.4 (−111)

SVI ROSC15’ (mL/m2) 11 4.7 −0.2 to 9.5 20.8 (80.9) −11.3 (−52.1)

SVI ROSC30’ (mL/m2) 11 5.9 1.6 to 10.2 20.2 (69.9) −8.5 (−30.9)

SVI ROSC60’ (mL/m2) 12 −0.2 −7.39 to 6.9 24.6 (92.3) −25.0 (−97.7)

SVRI baseline (dyn*s*cm−5*m−2) 24 163 −132 to 459 1610 (86.0) −1283 (−77.6)

SVRI ROSC15’ (dyn*s*cm−5*m−2) 11 −919 −1880 to 41 2266 (148) −4104 (−315)

SVRI ROSC30’ (dyn*s*cm−5*m−2) 11 −565 −912 to −220 582 (62.7) −1714 (−178)

SVRI ROSC60’ (dyn*s*cm−5*m−2) 12 −310 −633 to 13 808 (70.1) −1428 (−137)

SVV baseline (%) 24 3.8 0.9 to 6.6 17.6 (104) −10.1 (−62)

SVV ROSC15’ (%) 11 2.8 −5.8 to 11.4 31.3 (250) −25.7 (−289)

SVV ROSC30’ (%) 11 −2.2 −10.1 to 5.7 24.0 (109) −28.3 (−143)

SVV ROSC60’ (%) 12 2.0 −2.3 to 6.3 16.9 (93.5) −12.9 (−68)

FATD femoral arterial thermodilution, PRAM pressure recording analytical method, N sample size, Bias mean of the
differences, 95 % CI 95 % confidence interval of the Bias, LoA (%) limit of agreement expressed as absolute value and as
the percentage of the reference method (FATD), SVI stroke volume index, ROSC recovery of spontaneous circulation, SVRI
systemic vascular resistance index, SVV stroke volume variation
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Tracking of changes

The mean angular deviation from polar axis was −13.8°. Only 26.1 % of measurements

fell within the polar limits of ±30° (Fig. 3).

Differences between calculated and measured HR

The mean calculated HR used by the PRAM monitor to estimate CI was 138.5 bpm (95 %

CI 126.7 to 150.3 bpm), and the HR detected by the FATD monitor was 153.1 bpm (95 %

CI 141.1 to 165.1 bpm). The mean difference was −14.6 bpm (95 % CI for the difference,

−28.2 to −1.0 bpm, p = 0.036). When comparing at each of the moments, differences were

observed at ROSC15’ (p = 0.035) and at ROSC30’ (p = 0.045).

Discussion
The evaluation and validation of cardiac output devices is much more complex in chil-

dren than in adults. Most devices have been designed for adults and offer less accuracy

and reliability when used in young children [8, 10–15].

Fig. 3 Polar plot to analyze the agreement between femoral artery thermodilution (FATD) and the
pressure-recording analytical method (PRAM) for tracking changes in CI. Good agreement was measured by
the proportion of data points (bold dots) falling within the polar limits of ±30° from the polar axis. Points
lower than 0.45 L/min/m2 were disregarded for the analysis
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The reference method to measure cardiac output in critically ill adult patients is

the pulmonary artery thermodilution (PATD) using a pulmonary artery catheter

(PAC). The use of the PAC has been reported previously in a hemorrhagic shock

piglet model by our group [12]. However, severe complications occurred in a sub-

stantial number of animals, or was not possible to place the catheter in the correct

position. On the other hand, the PAC is falling into disuse in the clinical practice

in children, and we have considered that the FATD method was more suitable as

the reference method. Despite its limitations, the most frequently used pulse con-

tour technology in children is the PiCCO monitor (FATD method) [5–7], but it re-

quires transpulmonary thermodilution to calibrate cardiac output, in addition to

recalibration in cases of vasomotor tone and resistance changes. The PRAM, how-

ever, can measure absolute values of stroke volume independently of calibration

using parameters that characterize the elastic properties of the arteries from an ob-

jective analysis of the pressure wave profile. Accordingly, PRAM does not require

calibration and is both easy and fast to use.

While some studies in adults performed by the group who designed PRAM have

shown a good correlation between this device and PATD, and with other several

methods [19–21], others have reported discordant results. Paarmann et al. [23] found

poor agreement between PRAM and PATD in 23 adults after cardiac surgery. Biais

et al. [24] reported a high percentage of error on comparing PRAM and transthoracic

echocardiography in 35 adult patients, and Maj et al. concluded that PRAM was not re-

liable in adult unstable patients with atrial fibrillation [25]. In children, Calamandrei

et al. [26] compared CI measured by PRAM and Doppler echocardiography in 48 crit-

ically ill children and found a good level of correlation between both methods, with an

acceptable percentage error of 21 %. In a recent study, Saxena et al. [14] compared 210

paired cardiac output measurements with PRAM and transpulmonary ultrasound dilu-

tion in 48 mechanically ventilated children. Although mean CI was similar with both

methods, the LoA were wide (5.78 L/min/m2, with a percentage error of 143 %). Fur-

thermore, the concordance between PRAM and transpulmonary ultrasound dilution

was poor, with only 37 % of measurements falling within the predefined acceptable

limits. The authors therefore concluded that PRAM was not recommendable for critic-

ally ill children. Finally, we have performed a clinical observational study in which a

high percentage of CI measurements registered by PRAM in hemodynamically stable

children were outside normal limits and might be influenced by age and weight of the

patient [15].

Both pediatric studies and the study performed in adult patients that have shown

poor reliability of PRAM [14, 15, 23] coincide in the absence of an exquisite selection

of the arterial waveforms to be analyzed, as occurs in real daily practice, especially in

emergency situations such as in our animal model.

To our knowledge, our study is the first to have investigated the validity of PRAM

through its correlation and concordance with FATD in a pediatric animal model of car-

diac arrest. We considered 20 % as the limit of agreement because that is the approxi-

mate variability of the reference method [28]. Our results indicate that there is no

correlation or concordance between the CI measured by PRAM and that measured by

FATD, as the mean of the differences was greater than 20 %, and percentage error was

104 %, similar to the study performed in children by Saxena et al. [14].
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Interestingly, differences in CI were observed 15 min after ROSC despite that SVI was

not significantly different between both methods. Considering that the heart rate (HR) of

the subjects should be the same for both methods (because it was measured simultan-

eously), then the CI should not be different. There are two possible explanations for this

fact. First, despite the mean difference between both methods was not statistically signifi-

cant, the limits of agreement were wide. Positive and negative differences between both

methods may be balanced, resulting in a small mean difference. And, second, the Most-

Care monitor may have missed some waveforms where dicrotic notch has not been de-

tected to perform the calculations of the CI. Whereas the MostCare monitor measures

the SVI in a waveform, and then calculates the CI with the rate of the waveforms detected,

the PiCCO monitor measures the CI by thermodilution, regardless of the waveform.

MostCare monitor depends on the detection of the dicrotic notch. If this point of the

weaveform is not detected, the waveform is missed and does not count for the analysis.

The two moments when the animals were typically more tachycardic were 15 and 60 min

after ROSC, coinciding when the differences resulted statistically significant.

In this experiment, the PRAM monitor detected lower values of CI at 15 and 30 min

after ROSC, whereas similar baseline values were measured by FATD. This fact may

suggest that the changes over time measured by PRAM were more accurate than by

FATD as typically after ROSC CI drops below baseline values [4, 17]. However, no sta-

tistically differences were observed between both methods at 60 min after ROSC.

Polar plots are recommended to evaluate the ability to track changes in CI, since

Bland and Altman, and percentage of error analysis offer limited information. The polar

plot demonstrated a poor ability of PRAM to track changes in CI, with a low percent-

age of data included within the acceptable limits. These results are similar to previously

reported in children [14].

Limitations

Our study has several possible limitations. First, the FATD is not the gold standard

method to measure cardiac output. However, FATD in children has wide acceptance, as

the PATD is a dangerous method in infants, because of the catheter placement. Second,

we did not measure the dampening coefficient of the arterial line while using PRAM.

Both under- and overdampening may affect the ability of PRAM to estimate CO [30].

However, from a clinician point of view during an emergency such as the period before

and after a cardiac arrest, it is not realistic to spend time and efforts to test the accur-

acy of the arterial waveform. Nevertheless, arterial lines were flushed with 5 mL of sa-

line if the arterial waveform was found to be dampened after a visual check, as we

regularly do in daily clinical practice. And third, the sample size was small. This is an

inherent limitation of experimental studies with large animals. Still, the width of the

limits of agreement and the ability to track changes may have not changed despite a

larger sample of animals was used.

Conclusions
We conclude that PRAM is not a method comparable to femoral artery thermodilution

for measurement of the CI in this pediatric model of cardiac arrest. This device should

improve its algorithm for infants and children.
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