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Abstract

Background: The endothelium is a potentially valuable target for sepsis therapy. We
have previously studied an extracorporeal endothelial cell therapy system, called the
endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis
in swine. To further study of the therapeutic effects and possible mechanisms, we
established a miniature EBR system for septic rats induced by cecal ligation and
puncture (CLP).

Methods: In the miniature EBR system, the extracorporeal circulation first passed
through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF
passed through an EBR (a 1-mL cartridge containing approximately 2 × 106 endothelial
cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after
CLP, the rats were treated for 4 h with this extracorporeal system containing either
endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical
parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In
vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR
system and the resulting changes in their functions were monitored.

Results: The EBR system ameliorated CLP-induced sepsis compared with the sham
EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %,
while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system
protected the liver and renal function and ameliorated the kidney and lung injury.
Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the
infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore,
after the EBR treatment both in vivo and in vitro, the expression of intercellular
adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium
decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In
addition, the EBR system decreased CD11b expression and intracellular free calcium
level of peripheral blood neutrophils, modulated the activation of these neutrophils.

Conclusions: The EBR system significantly ameliorated CLP-induced sepsis and
improved survival and organ functions. Compared with the sham EBR system, this
extracorporeal endothelial therapy may be involved in modulating the function of
pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil,
and modulating the activation of peripheral blood neutrophils.
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Background
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host re-

sponse to infection [1] and is the most common cause of death in the intensive care

unit [2]. Despite the progress in the development of antibiotics and in critical care ther-

apy, sepsis is still associated with a high mortality rate [2].

Cell-based therapy has developed into a new therapeutic platform for the treat-

ment of a vast array of clinical disorders, which may prove to be a more successful

strategy by providing a dynamic, interactive, and individualized therapeutic approach

[3]. In animal studies, stem/progenitor technologies, including exogenous infusion

and endogenous recruitment, have shown significant promise as treatment strategies

in critical care medicine [4–7]. In terms of safety, extracorporeal cell therapies may

be a better choice, which not only replace the function of injury cells or modulate

the pathophysiological processes but also provide an immunoprotective barrier. In

swine models of sepsis, extracorporeal cell therapy with granulocytes [8] or renal

proximal tubule cells [9] improved survival duration. Furthermore, in a phase II mul-

ticenter clinical trial, involving critically ill patients with acute renal failure, this

extracorporeal renal-tubule cell therapy was proved to be efficacious and safe [10].

Nevertheless, the difficulties in large animal experiments keep the mechanism study

elucidation insufficient.

General dysfunction of the endothelium is a key event in the pathogenesis of sepsis

[11]. Once the endothelium becomes activated during the development of sepsis, it

transforms into a procoagulant, antifibrinolytic, and proadhesive state [12]. The endo-

thelial activation in sepsis is associated with changes in hemostatic balance, leukocyte

trafficking, vascular permeability, inflammatory processes, and microcirculatory flow

[13]. Thus, the endothelium plays a key role in mediating the sepsis phenotype [14]

and is a potentially valuable target of sepsis therapy.

We previously studied an endothelial cell therapy system [15], called the endothelial

bioreactor (EBR), involving a nonwoven fabric polytetrafluoroethylene (PTFE) hollow

fiber cartridge containing endothelial cells in an extracorporeal circuit. Timely use of

EBR therapy may improve cardiovascular performance and prolong the survival time of

endotoxemia sepsis in swine [15]. Nevertheless, the difficulties in large animal experi-

ments keep its elucidation insufficient. Therefore, we established a miniature EBR sys-

tem for septic rats to study the therapeutic effects and possible mechanisms of this

endothelial cell-based therapy.

Methods
Cecal ligation and puncture

Adult male Sprague-Dawley rats (450–550 g) were used for the studies. The experi-

mental procedures were in accordance with the Animal Care and Use Committee of

Shanghai Jiaotong University, Shanghai, China. All surgical procedures were carried out

under general anesthesia induced by 4 % chloral hydrate (0.9 mL/100 g intraperitone-

ally). The cecum was identified and ligated with a 3-0 silk tie at 25 % length of the

cecum. A double puncture of the cecal wall was performed with a 20-gauge needle, and

the cecum was gently squeezed to ensure that a small amount of feces was extruded

onto the surface of the bowel. Lactated Ringer’s solution (2 mL/100 g) was given
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subcutaneously as fluid resuscitation [16, 17]. As sham cecal ligation and puncture

(CLP) rats, the cecum was minimally handled without ligation and puncture.

Culturing of endothelial cells on microcarriers

Endothelial cells (human umbilical vein endothelial cells (HUVECs)) were a gift from

Professor Lijun Jia (Department of Immunology, Shanghai Medical College, Fudan

University, Shanghai, China).

For endothelial cell culture, protocols were adapted based on the recommendations

for microcarrier culture using Cytodex-3 (GE Healthcare, Piscataway, USA). Cytodex-3

is a microporous microcarrier, made up of a dextran matrix with a collagen layer at the

surface, for expansion of cells. For stirred microcarrier cultures, 100-mL spinner flasks

(Bellco Glass, Vineland, USA) were used, with a final medium volume of 80 mL and a

stirring speed of 40 rpm. Required quantities of Cytodex-3 were weighted (final con-

centrations of 1.0 mg/mL), hydrated, and sterilized by autoclaving as recommended by

the manufacturers. Microcarriers were equilibrated in the culture medium for at least

30 min prior to the addition of the cells in order to maximize cell attachment. The cells

were cultured in DMEM media containing 10 % heat-inactivated fetal bovine serum

(GIBCO, Gaithersburg, USA), 100 U/mL penicillin, 100 μg/mL streptomycin, and

2 mM glutamine. Incubation was conducted at 37 °C in a 5 % CO2, humidified atmos-

phere. The expansion of endothelial cells was performed as previously described [18].

The experimental protocol of the EBR system

Eighteen hours after CLP, the animals were re-anesthetized with chloral hydrate. The

carotid artery and the femoral vein were isolated by dissection and cannulated with

0.97-mm polyethylene-50 tubing (Becton Dickinson, San Diego, USA) for implementa-

tion of extracorporeal circulation.

The EBR system consisted of a mini-hemofilter (polyether sulphone high-flux mem-

brane, membrane surface area 0.02 m2, cutoff point 40 kD; PEONY, Shanghai, China),

an EBR (a 1-mL cartridge containing approximately 2 × 106 endothelial cells grown on

microcarriers), tubing lines, and mini-pumps (VWR, West Chester, USA).

Eighteen hours after CLP, these animals were randomly assigned to receive either

EBR or sham treatment for 4 h. The extracorporeal circulation was driven by a mini-

pump from the carotid artery to the femoral vein at a blood flow rate of 0.8–1.0 mL/

min [19]. In the EBR group, the extracorporeal circulation passed through a mini-

hemofilter with the ultrafiltration rate at 0.25 mL/min, then the ultrafiltrate (UF)

passed through an EBR (Fig. 1a, b). In the sham EBR group, the extracorporeal circula-

tion was set up with the same hemofilter and bioreactor cartridge but without any cells.

In the control group, all rats were without the CLP procedure or the extracorporeal

circulation. A volume of 62.5 U/mL of heparin was used to prevent coagulation in this

circuit. After 4 h, the treatment was stopped and the rats were observed for recovery,

returned to the animal facility, and given access to food and water. Survival time was

assessed up to 7 days. Another group that underwent the shame CLP procedure

without extracorporeal circulation was used as the control. Before and after the extra-

corporeal circulation, microcarriers were collected and stained with 4′,6-diamidino-2-

phenylindole (DAPI; Becton Dickinson, San Diego, USA) and observed under a
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confocal laser scanning microscope (Leica Microsystems, Heidelberg, Germany) at a

magnification of ×400 ×Z 1.5.

Analysis of bronchoalveolar lavage fluid

Bronchoalveolar lavage fluid (BALF) was obtained by lavaging the left lung once with

2 mL PBS and three times with 4 mL PBS. Total cells were counted under optical mi-

croscopes. Total protein in the first BALF was measured by bicinchoninic acid kit.

TNF-α, IL-1β, and IL-6 levels in the first BALF were measured by an enzyme-linked

immunosorbent assay (ELISA) from eBioscience (San Diego, USA).

Flow cytometric analysis

Fluorochrome-labeled antibodies CD4, CD8, CD25, Foxp3, CD45, CD11b, and Gran-

ulocyte Marker (eBioscience, San Diego, USA) were used for surface and intracellular

staining, according to the manufacturer’s instructions. After staining, cells were ana-

lyzed by flow cytometer (Becton Dickinson, San Diego, USA).

Quantitative real-time RT-PCR analysis

Total RNA was extracted using Micro Scale RNAqueous Isolation kit, and then cDNA

was synthesized with the High-Capacity cDNA Reverse Transcription kit (both from

Applied Biosystems, Foster City, USA). Quantitative real-time polymerase chain reac-

tion was performed with the SYBR green Gene Expression Assay (Applied Biosystems,

Fig. 1 Construction of the endothelial bioreactor (EBR) system for septic rats. a The protocol for the EBR
treatment. b A schematic drawing of the EBR system. c Survival was plotted during a 7-day period (n = 22–
25 per group). d Endothelial cells grown on microcarriers were collected before and after the extracorporeal
circulation and were stained with DAPI (blue) at ×400 ×Z 1.5 magnification. CLP cecal ligation and puncture,
EBR endothelial bioreactor, ECs endothelial cells, DAPI 4′,6-diamidino-2-phenylindole, BF bright field
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Foster City, USA). The relative expressions of target genes were calculated using the

2ΔC(t) method. The sequences of primers for polymerase chain reaction are as follows:

intercellular adhesion molecule (ICAM)-1, 5′-CTCATCCTGCGCTGTCTGGT-3′ (for-

ward), 5′-CCGGAGCTGCCTGACCTCGG-3′ (reverse); CXCL1, 5′-GCGTTTCATC

GATGGTCGTT-3′ (forward), 5′-CTTCTTCCCGCTCAACACCT-3′ (reverse); and

CXCL2, 5′-AACCATCAGGGTACAGGGGT-3′ (forward), 5′-GGGCTTCAGGGTTG

AGACAA-3′ (reverse).

Western blot analysis for ICAM-1

Pulmonary endothelial cells or lung tissue were lysed with RIPA buffer. Proteins were

separated by electrophoresis in a denaturing polyacrylamide gel and transferred to a

PVDF membrane. After blocking with 5 % milk-Tris-buffered saline and Tween 20

(TBST) and washing in TBST, membranes were then incubated in the appropriate pri-

mary antibodies (anti-ICAM-1; both from R&D, Emeryville, USA) and anti-GAPDH

(Cell Signal Technology, Beverly, USA) at 4 °C overnight. After washing, membranes

were incubated with the appropriate HRP-conjugated secondary antibodies and ana-

lyzed by ECL development.

Isolation of rat pulmonary endothelial cells

The lungs were harvested at 18 h after CLP, finely minced, and digested in 10 ml colla-

genase type II (2 mg/ml, Sigma-Aldrich, St. Louis, USA). The isolated cells were incu-

bated with Anti-Rat CD31 Biotin (eBioscience, San Diego, USA), and endothelial cells

bound with antibody were magnetically separated with Anti-Biotin Microbeads (Milte-

nyi Biotec, Bergisch Gladbach, Germany) as described previously [20, 21]. Pulmonary

endothelial cells of healthy rats were also isolated as control.

Simulation of EBR treatment in vitro

Eighteen hours after CLP, the rats were cannulated, and the extracorporeal circulation

passed through a mini-hemofilter with the ultrafiltration rate at 0.25 mL/min. The UF

of the rats were harvested (sham-UF). The UF of healthy rats were also harvested as a

control (control-UF). HUVECs were stimulated with the UF for 0, 0.5, 1, 2, or 4 h.

Then, the supernatant (EBR-UF) was collected and used to stimulate the isolated pul-

monary endothelial cells. After 24 h of stimulation with EBR-UF, the cells were har-

vested for Western blot and the supernatant was used to analyze the concentrations of

CXCL1 and CXCL2 using ELISA kits (R&D, Emeryville, USA).

Isolation of rat peripheral blood neutrophils and detection of intracellular free calcium

level

Rat neutrophils were isolated from the peripheral blood at 18 h after CLP by Percoll

density gradient as previously described [22]. The purity of isolated neutrophils was

checked by fluorochrome-labeled antibodies CD45 and Granulocyte Marker (eBioscience,

San Diego, USA) using flow cytometer (Becton Dickinson, San Diego, USA). Neutrophils

of healthy rats were also isolated as a control.

The neutrophils were incubated with Fluo-3 AM (Invitrogen) for 30 min in darkness

at room temperature, and the resulting fluorescence as the indicator of Ca2+ was
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monitored using a flow cytometer (Becton Dickinson, San Diego, USA) at excitation

wavelength 488 nm and the emission wavelength of 525 nm [23, 24].

Histopathologic analysis of the lung and kidney

Lung sections were stained with hematoxylin and eosin. All lung fields at ×200 magnifi-

cation were examined for each sample. Assessment of histological lung injury was per-

formed as follows: 1 = normal; 2 = focal (<50 % lung section) interstitial congestion and

inflammatory cell infiltration; 3 = diffuse (>50 % lung section) interstitial congestion

and inflammatory cell infiltration; 4 = focal (<50 % lung section) consolidation and in-

flammatory cell infiltration; 5 = diffuse (>50 % lung section) consolidation and inflam-

matory cell infiltration [25].

Kidney sections were stained with periodic acid and Schiff ’s reagent. All kidney fields

at ×400 magnification were examined for each sample. Damaged renal tubules were

identified by diffuse tubular dilatation, intraluminal casts and/or tubular cell blebbing,

vacuolization, and detachment, in cortex and outer medulla, as follows: 0 = none; 1 =

<10 %; 2 = 11–25 %; 3 = 26–45 %; 4 = 46–75 %; 5 = >76 % [26, 27].

Measurements of the liver and renal functions

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine

(Cr), and blood urea nitrogen (BUN) were measured with an automated chemical

analyzer (Vitros-950, Johnson & Johnson, New Brunswick, USA).

Statistical analysis

All numerical data are expressed as mean ± SEM. The Student’s t tests were used for

comparisons between two groups. Multiple-group comparisons were performed by

one-way ANOVA followed by a post hoc Tukey’s test to compare each group. The sur-

vival analysis was performed by the Kaplan-Meier method and log-rank test. All statis-

tical analyses were performed with GraphPad Prism software, and a two-sided p < 0.05

was considered significant.

Results
Construction of the EBR system for CLP-induced sepsis in rats

In order to estimate the potential harmful effect of this extracorporeal circulation on

survival time, the rats were divided into two groups: the CLP group (CLP, without

extracorporeal circulation) and the sham EBR group (CLP, EBR system without any

cells); then, survival was analyzed until 7 days after CLP. We found that survival dur-

ation was not statistically different between the sham EBR and control animals (25.0 vs.

33.3 %, p = 0.54; Fig. 1c), which meant this circulation system was safe for the septic

rats. The EBR was a 1-mL cartridge, whereas we need approximately 2 × 106 endothelial

cells in it. Thus, we cultured endothelial cells on microcarriers to increase the surface-

area-to-volume ratio. During the culturing of endothelial cells on microcarriers, we an-

alyzed the concentrations of glucose, lactate, and nitric oxide (NO) in different time

points for analyzing the metabolic activity. We found that endothelial cells could grow

adhering to the surface of microcarriers after seeding; lactate and NO levels in the cul-

ture media rose continuously, and the glucose concentration decreased with time,
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indicating metabolic activity residing in the microcarrier culture (data not shown). For

testing whether the EBR system treatment will affect the adhesion of endothelial cells

on the microcarrier, we collected microcarriers and stained them with DAPI before and

after the extracorporeal circulation. We observed that there were a large number of

endothelial cells growing on the microcarriers before the circulation. Similar observa-

tions after the extracorporeal circuit revealed no obvious decrease in the density of the

cells (Fig. 1d). These data showed that we successfully constructed an EBR system for

rats with CLP-induced sepsis.

The EBR system ameliorated CLP-induced sepsis

We next investigated whether this EBR system can ameliorate sepsis. First, we analyzed

survival time after CLP. We found that the EBR system can improve the survival of rats

with CLP-induced sepsis. Data showed that the 7-day survival rate of sham-treated rats

(sham EBR group) was only 25.0 %, while in the EBR-treated group (EBR group), it in-

creased to 57.14 % (p = 0.04, sham EBR vs. EBR; Fig. 2a). Sepsis may result in multiple

organ dysfunction, thus, we assessed the liver function, renal function, and histological in-

jury of the kidney and lung. We monitored the liver function using serum ALT and AST

and used serum Cr and BUN to monitor renal function. At 48 h after CLP, the levels of

Fig. 2 The endothelial bioreactor (EBR) system ameliorated sepsis induced by cecal ligation and puncture
(CLP). a Survival was plotted during a 7-day period (n = 22–25 per group). b Serum ALT and AST were
quantified at 48 h after CLP (n = 7–9 per group). c Serum Cr and BUN were measured at 48 h after CLP
(n = 7–9 per group). d Representative photomicrographs of lung sections stained with hematoxylin and eosin
(HE) and examined at ×200 magnification and of kidney sections stained with periodic acid and Schiff’s reagent
(PAS) and examined at ×400 magnification. e Histopathologic mean of lung and kidney injury was scored
at ×200 magnification at 72 h after CLP (n = 6 per group, at least ten fields were reviewed for each slide).
*p < 0.05, **p < 0.01, ***p < 0.001. Data are expressed as mean ± SEM. EBR endothelial bioreactor, CLP cecal
ligation and puncture, ALT alanine aminotransferase, AST aspartate aminotransferase, Cr creatinine, BUN
blood urea nitrogen
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ALT and AST were elevated in the sham-EBR group compared with rats without induced

sepsis or circulation (control group) (p < 0.001, sham EBR vs. control; Fig. 2b), while these

metrics decreased significantly in the EBR-treated rats (p < 0.001, sham EBR vs. EBR;

Fig. 2b). Similarly, after the EBR treatment, the levels of serum Cr and BUN also de-

creased (p < 0.01, sham EBR vs. EBR; Fig. 2c). The degree of damaged renal tubules of the

kidney and the pathology of the lung that includes interstitial congestion and inflamma-

tory cell infiltration in sham-EBR group showed much severer injuries than the control

group (Fig. 2d). However, the injuries were ameliorated after the EBR treatment (Fig. 2d).

Furthermore, the injury scores of the kidney (p < 0.05, sham EBR vs. EBR; Fig. 2e) and

lung (p < 0.05, sham EBR vs. EBR; Fig. 2e) confirmed the protective effects of the EBR sys-

tem. These data suggested that the EBR system could prolong the survival time and re-

duce organ injuries of CLP-induced sepsis compared with the sham EBR system.

The EBR system alleviated inflammation in the lungs

The lung is one of the first organs to be affected in sepsis; cellular infiltration, along

with the release of proinflammatory mediators, leads to the development of lung injury

[5]. The concentration of total protein in BALF was used to assess pulmonary vascular

leakage. At 48 h after CLP, the total protein levels in BALF were elevated in the sham-

EBR group compared with rats without induced sepsis or circulation (control group)

(p < 0.001, sham EBR vs. control; Fig. 3a), while the total protein decreased significantly

Fig. 3 The endothelial bioreactor (EBR) system alleviated inflammation in lungs. a Total protein in BALF at
48 h after CLP (n = 7–9 per group). b Inflammatory cytokines in BALF were measured by ELISA at 48 h after
CLP (n = 7–9 per group). c Total cell counts in BALF at 48 h after CLP (n = 7–9 per group). d The levels of
neutrophils in the lung were analyzed by flow cytometer at 48 h after CLP (n = 7–9 per group). e Gating
strategy for the identification of neutrophils in the lung. *p < 0.05, **p < 0.01, ***p < 0.001. Data are expressed as
mean ± SEM. EBR endothelial bioreactor, CLP cecal ligation and puncture, BALF bronchoalveolar lavage fluid,
ELISA enzyme-linked immunosorbent assay
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in the EBR-treated rats (p < 0.001, sham EBR vs. EBR; Fig. 3a). As cytokine storm in the

lungs may lead to lung injury [28], to further evaluate pulmonary inflammation in the

septic rats, levels of inflammatory-associated cytokines including TNF-α, IL-1β, and IL-

6 were measured in the BALF samples. We found that the levels of these cytokines in-

creased significantly in the sham-EBR group than the control group (p < 0.05; Fig. 3b).

EBR treatment could decrease the levels of TNF-α (p < 0.05), IL-1β (p < 0.05), and IL-6

(p < 0.05) compared with the sham-EBR group at 48 h after CLP (Fig. 3b). Considering

that the upregulated proinflammatory cytokines can result in recruitment and activa-

tion of inflammatory cells [29], we counted the total cells in BALF of the different

groups. We found that the total BALF cell count in the sham-EBR group was much

more than that in the control group (p < 0.001; Fig. 3c). However, septic rats with EBR

treatment showed a significant decrease in the total BALF cell count at 48 h after the

CLP procedure compared with the sham EBR group (p < 0.001; Fig. 3c). In sepsis, acti-

vated neutrophils transmigrate and infiltrate into the lungs, and this overwhelming mi-

gration correlates with the severity of lung injury [30]. Thus, we examined the

infiltration of neutrophils in the lungs by flow cytometer. Granulocytes marker [31]

and CD45 double-positive cells were defined neutrophils in rats. We found that the in-

filtration of neutrophils in the lungs of EBR group was significantly reduced compared

with sham-EBR group (38.2 vs. 49.7 %, p < 0.05; Fig. 3d, e) at 48 h after CLP. Taken to-

gether, these data suggested that the EBR system could reduce lung injury by alleviating

inflammation which includes inflammation-associated cytokines, cell numbers in BALF,

and the infiltration of neutrophils in the lungs.

The EBR system modulated the function of pulmonary endothelial cells and peripheral

blood neutrophils

Recruitment of neutrophils into the lung is a key event in the early development of

acute lung injury [32]. CXCL1 and CXCL2 are dominant chemokines for attracting

neutrophils in inflammatory diseases [32–34]. Thus, we analyzed the mRNA expres-

sions of CXCL1 and CXCL2 in the lungs and found that the mRNA expressions of

these two chemokines in the sham-EBR group was upregulated than the control group

(CXCL1, p < 0.001; CXCL2, p < 0.01; Fig. 4a). However, the EBR system could signifi-

cantly reduce the mRNA expression of CXCL1 and CXCL2 in the lung tissue compared

with the sham EBR system (CXCL1, p < 0.001; CXCL2, p < 0.05; sham EBR vs. EBR;

Fig. 4a). Acute inflammation is characterized by both neutrophil emigration and in-

creased vascular permeability [35]. Activation of the vascular endothelium results in

the induction of adhesion molecules (e.g., intercellular adhesion molecule-1 and E-

selectin) and chemokines (e.g., CXCL1 and CXCL2) that play a central role in the cas-

cade of leukocyte tethering, slow rolling, firm adhesion, and transendothelial migration

[36, 37]. ICAM-1, a marker of pro-adhesive state endothelial cells, is highly expressed

on endothelial cells in sepsis [38]. We found that the protein level of ICAM-1 (Fig. 4b)

and mRNA expression of ICAM-1 (p < 0.001; Fig. 4c) in the sham-EBR group was up-

regulated than the control group, which implying the endothelial cells in the lung, were

at pro-adhesive state after CLP. Furthermore, the EBR system could significantly reduce

both the protein level of ICAM-1 (Fig. 4b) and the mRNA expression of ICAM-1 (p <

0.001, sham EBR vs. EBR; Fig. 4c) in the lung tissue compared with the sham EBR
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system, which suggested that the EBR system might ameliorate the pro-adhesive state.

To further confirm that the EBR treatment may be involved in reducing the secretion

of CXCL1 and CXCL2 and the expression of ICAM-1 of pulmonary endothelial cells,

we isolated pulmonary endothelial cells from rats with or without CLP and mimicked

the EBR system treatment in vitro by stimulating pulmonary endothelial cells with ul-

trafiltrate (UF) from control (control-UF), sham-EBR (sham-UF), and EBR group (EBR-

UF). We found that both of the protein level (Fig. 4d) and the mRNA expression of

ICAM-1 (p < 0.001; Fig. 4e) were much higher in pulmonary endothelial cells of septic

rats compared with the cells isolated from healthy rats. Stimulation with UF of the

sham-EBR system increased the protein level and the mRNA expression of ICAM-1 (p

< 0.05, sham-UF vs. control-UF; Fig. 4g, h) in pulmonary endothelial cells of septic rats,

whereas stimulation with UF of EBR system could reduce the level of ICAM-1 (p <

0.01, sham-UF vs. 4-h EBR-UF; Fig. 4g, h) in pulmonary endothelial cells of the septic

rats. Meanwhile, we found that the levels of CXCL1 and CXCL2 in culture supernatant

of pulmonary endothelial cells of septic rats increased significantly compared with the

Fig. 4 The endothelial bioreactor (EBR) system modulated pulmonary endothelial function. a The mRNA
expression of CXCL1 and CXCL2 in the lungs was analyzed by quantitative real-time RT-PCR at 48 h after
CLP (n = 7–9 per group). b The level of ICAM-1 in the lungs was examined by Western blot analysis at 48 h
after CLP (n = 7–9 per group). c The mRNA expression of ICAM-1 in the lungs was analyzed by quantitative
real-time RT-PCR at 48 h after CLP (n = 7–9 per group). d–f ICAM-1, CXCL1, and CXCL2 level of pulmonary
endothelial cells from rats with or without CLP (n = 6 per group). g–i The EBR system was used in vitro, the
UF of this system was used to stimulate pulmonary endothelial cells and the cells and supernatants were
collected at 24 h after different stimuli (n = 6 per group). d, g The level of ICAM-1 in pulmonary endothelial
cells was examined by Western blot analysis. e, h The mRNA expression of ICAM-1 in pulmonary endothelial
cells was analyzed by quantitative real-time RT-PCR. f, i The levels of CXCL1 and CXCL2 in the culture
supernatant of pulmonary endothelial cells were measured by ELISA. *p < 0.05, **p < 0.01, ***p < 0.001. Data
are expressed as mean ± SEM. EBR endothelial bioreactor, CLP cecal ligation and puncture, UF ultrafiltration
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cells isolated from healthy rats (CXCL1, p < 0.001; CXCL2, p < 0.01; Fig. 4f ). Stimula-

tion with UF of sham-EBR system increased the levels of CXCL1 and CXCL2 (p < 0.05,

sham-UF vs. control-UF; Fig. 4i) in culture supernatant of pulmonary endothelial cells

of septic rats, whereas stimulation with UF of EBR system could reduce the levels of

these two chemokines (CXCL1, p < 0.01; CXCL2, p < 0.001; sham-UF vs. 4-h EBR-UF;

Fig. 4i) in pulmonary endothelial cells of the septic rats. Collectively, these data sug-

gested that the EBR system may be involved in modulating the function of pulmonary

endothelial cells and reducing the adhesion and chemotaxis of neutrophils.

In addition, excessive activation of neutrophils is a major component of tissue dam-

age and organ failure in sepsis [39]. CD11b and intracellular free calcium level are pa-

rameters commonly used for the assessment of neutrophil activation [40, 41].

Therefore, we isolated peripheral blood neutrophils from rats with CLP and stimulated

with culture supernatant of HUVECs for 4 h. The control groups were neutrophils

without any stimulation. Then, the levels of CD11b and intracellular free calcium were

analyzed by flow cytometer. The mean fluorescence intensity (MFI) of CD11b and the

level of intracellular free calcium of peripheral blood neutrophils from CLP-rats in-

creased significantly compared with neutrophils from healthy rats (p < 0.001, CLP+ and

supernatant of HUVECs− vs. CLP- and supernatant of HUVECs−; Fig. 5a–d). However,

these two parameters of neutrophils from septic rats decreased after stimulated with

culture supernatant of HUVECs for 4 h compared with neutrophils with no stimulation

(CD11b, p < 0.01; Ca2+, p < 0.05; CLP+ and supernatant of HUVECs+ vs. CLP+ and

supernatant of HUVECs−; Fig. 5a–d). These data show that the EBR system may be in-

volved in modulating the activation of peripheral blood neutrophils.

Fig. 5 The endothelial bioreactor (EBR) system modulated the activation of peripheral blood neutrophils in
vitro. a–d Peripheral blood neutrophils from rats with CLP were stimulated with culture supernatant of
HUVECs for 4 h, and the supernatant were collected at 24 h after this stimulation. a, b The mean fluorescence
intensity of CD11b was analyzed by flow cytometer (n = 7–9 per group). c, d The mean fluorescence intensity
of intracellular free calcium was analyzed by flow cytometer (n= 7–9 per group). *p< 0.05, **p< 0.01, ***p< 0.001.
Data are expressed as mean ± SEM. EBR endothelial bioreactor, CLP cecal ligation and puncture, MFI mean
fluorescence intensity, HUVECs human umbilical vein endothelial cells
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Discussion
A previous study by our laboratory has showed that timely EBR therapy improves car-

diovascular performance and prolongs the survival time of endotoxemia sepsis in swine

[15]. In the present study, we established a new EBR system for septic rats and demon-

strated that the EBR system ameliorated CLP-induced sepsis and improved survival

and organ functions. In animal models, the cytokine response is fully activated by 16–

18 h after CLP [42], and the ligated cecum begins to heal after 24 h [19, 43]. In clinical

practice, patients often do not come to the hospital at the early stage of infection. In

order to simulate clinical practice, we started the treatment at 18 h after CLP. The

therapeutic use of extracorporeal bioreactors has a long tradition. Different cell-based

extracorporeal organ support systems involving either hepatocytes or renal tubular cells

have been used against acute liver failure [44–46] and acute renal failure associated

with sepsis [9, 47]. An extracorporeal bioartificial kidney consisting of a conventional

hemofilter connected to a renal tubule assist device has shown its ability to successfully

replace the filtration, transport, metabolic, and endocrine functions of the kidney in

critically ill patients with acute renal failure in phase I/II clinical trials [10, 47]. More-

over, an extracorporeal treatment with donor granulocytes appears to be well tolerated

and shows promising efficacy results in patients with septic shock, thus encouraging

further studies [48].

The EBR system is an extracorporeal cell therapy with endothelial cells. We found

that the EBR system alleviates inflammation in the lungs and reduces the infiltration of

inflammatory cells, especially neutrophils. In sepsis, a number of different mechanisms

may induce functional modulation of the endothelium, including increased expression

of cell adhesion molecules and trafficking of leukocytes [49]. Endothelial cells are crit-

ical in maintaining a delicate balance between vasoconstriction and vasodilation, blood

cell adherence and non-adherence, anticoagulation and procoagulation, and permeabil-

ity and tightness [50]. These cells are not inert, rather they may adapt their function

upon interaction with inflammatory mediators, and these changes are referred to as ac-

tivation. They encompass a change from an anti- into a procoagulant surface; the ex-

pression of adhesion molecules; the production of inflammatory mediators, including

chemoattractant agents; and the production of vasoactive compounds [11]. Two studies

in cell-based treatments showed that transplanting endothelial cells to mice with ische-

mic acute kidney injury could change the function of renal endothelial cells and im-

prove the renal function [51, 52]. The dysfunction or activation of endothelial cells

plays a major role in the pathogenesis of sepsis [11, 14, 50]. Thus, endothelial cells rep-

resent an attractive therapeutic target in sepsis.

ICAM-1 is a cell-surface protein that is expressed at very low levels on pulmonary

endothelium. The expression of ICAM-1 is upregulated after stimulation by inflamma-

tory mediators such as cytokines and bacterial lipopolysaccharides during septic pro-

cesses [53, 54]. ICAM-1 mediates inflammatory responses via adhesion of leukocytes to

activated endothelium and subsequent leukocyte transmigration through the pulmon-

ary endothelial layer [55]. The increased expression of endothelial adhesion molecules

either at the membrane level or in the plasma typifies different models of sepsis [12].

Moreover, there is a close relationship between plasma levels of adhesion molecules

and outcomes of sepsis. In human sepsis, studies have shown that the higher the

plasma levels of ICAM-1, the greater the number of organs damaged and the mortality
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[13, 56]. The present study showed that the level of ICAM-1 in the lung tissue was in-

creased after CLP, while the EBR treatment reduced its expression compared with the

sham treatment. Furthermore, the level of pulmonary endothelial ICAM-1 significantly

decreased after the EBR treatment in vitro. In other words, our findings indicate that

this extracorporeal endothelial therapy may be involved in reducing the expression of

ICAM-1 in the pulmonary endothelium, and this change should help to alleviate the

adhesion of neutrophils. Moreover, in vivo and in vitro, we also found that this treat-

ment decreased the secretion of CXCL1 and CXCL2 of septic pulmonary endothelial

cells compared with the sham treatment. CXCL1 and CXCL2 are important

neutrophil-attracting chemokines. Recent studies showed that CXCR2 (the receptor of

CXCL1 and CXCL2) blockade results in impaired neutrophil recruitment in

lipopolysaccharide-induced acute lung injury [57, 32]. Our data indicate that this EBR

therapy may be involved in reducing the chemotaxis of neutrophils in the lung tissue

via decreasing the secretion of CXCL1 and CXCL2 of pulmonary endothelial cells.

Neutrophils are known to play an important role in inflammatory responses [58]. How-

ever, excessive activation of neutrophils is a direct cause of tissue damage and organ

failure in sepsis [39, 58]. Mac-1 (CD11b/CD18), the major subtype of integrins, is re-

sponsible for the firm adhesion of neutrophils to endothelium [40]. Once the neutro-

phils are activated, the shape of these cells changed and the amount of Mac-1

increased, resulting in enhanced adhesion to the endothelium and transmigration and

infiltration of these neutrophils [40]. Another parameter commonly used for the assess-

ment of neutrophil activation is intracellular free calcium level. Ca2+-dependent func-

tions include activation of the membrane-associated superoxide-generating electron

transporter, NADPH oxidase, and adhesion to the endothelium [41]. The present study

showed that the EBR system decreased the CD11b expression and intracellular free cal-

cium level of peripheral blood neutrophils compared with the sham treatment, which

might modulate the activation of these neutrophils.

In the early phase of sepsis, the overwhelming inflammatory response is initiated after

microbial infection [59], while the late phase is characterized by T cell hyporesponsive-

ness and defective antigen presentation [60, 61]. This phase is considered a state of

immunosuppression or immunoparalysis of the host [62]. Massive apoptosis of lympho-

cytes is one of the main drivers leading to immunoparalysis [63]. To assess the adaptive

immune response, circulating and splenic levels of CD4+ helper T cells, CD8+ cytotoxic

T cells, and CD4+CD25+Foxp3+ T regulatory cells were measured at 72 h after CLP.

However, there was no significant difference between EBR-treated and sham-treated

rats either in the peripheral circulation or in the spleen (Additional file 1: Figure S1).

Thus, the 4-h EBR system treatment had no effect on the levels of T lymphocytes in

the current rat model.

Conclusions
In summary, these data suggested that EBR system ameliorates CLP-induced sepsis and

improves survival and organ functions compared with the sham EBR system. The EBR

system alleviates inflammation in the lungs and reduces the infiltration of inflammatory

cells and may be involved in modulating the function of pulmonary endothelial cells

and reducing the adhesion and chemotaxis of neutrophils. In the same time, the EBR

system might probably modulate the activation of peripheral blood neutrophils directly.
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Additional file

Additional file 1: Figure S1. The endothelial bioreactor (EBR) had no effect on the levels of T lymphocytes in
septic rats. Circulating and splenic levels of CD4+ helper T cells, CD8+ cytotoxic T cells, and CD4+ CD25+ Foxp3+ T
regulatory cells were analyzed by flow cytometer at 72 h after CLP (n = 7–9 per group). EBR = endothelial bioreactor;
CLP = cecal ligation and puncture. (TIF 307 kb)
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