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Abstract

Background: Modulation of inflammation and oxidative stress appears to limit
sepsis-induced damage in experimental models. The kidney is one of the most
sensitive organs to injury during septic shock. In this study, we evaluated the
effect of N-acetylcysteine (NAC) administration in conjunction with fluid resuscitation
on renal oxygenation and function. We hypothesized that reducing inflammation
would improve the microcirculatory oxygenation in the kidney and limit the onset of
acute kidney injury (AKI).

Methods: Rats were randomized into five groups (n = 8 per group): (1) control group,
(2) control + NAC, (3) endotoxemic shock with lipopolysaccharide (LPS) without fluids,
(4) LPS + fluid resuscitation, and (5) LPS + fluid resuscitation + NAC (150 mg/kg/h). Fluid
resuscitation was initiated at 120 min and maintained at fixed volume for 2 h with
hydroxyethyl starch (HES 130/0.4) dissolved in acetate-balanced Ringer’s solution
(Volulyte) with or without supplementation with NAC (150 mg/kg/h). Oxygen
tension in the renal cortex (CμPO2), outer medulla (MμPO2), and renal vein was
measured using phosphorimetry. Biomarkers of renal injury, inflammation, and
oxidative stress were assessed in kidney tissues.

Results: Fluid resuscitation significantly improved the systemic and renal
macrohemodynamic parameters after LPS. However, the addition of NAC further improved
cortical renal oxygenation, oxygen delivery, and oxygen consumption (p< 0.05). NAC
supplementation dampened the accumulation of NGAL or L-FABP, hyaluronic acid,
and nitric oxide in kidney tissue (p < 0.01).

Conclusion: The addition of NAC to fluid resuscitation may improve renal oxygenation
and attenuate microvascular dysfunction and AKI. Decreases in renal NO and hyaluronic
acid levels may be involved in this beneficial effect. A therapeutic strategy combining
initial fluid resuscitation with antioxidant therapies may prevent sepsis-induced AKI.
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Background
Inflammation is a key process in the pathophysiology of septic shock [1]. The whole

activation of leukocytes, the cascade of inflammation, the associated cytokine storm,

and endothelial cell dysfunction collaborate to alter the microcirculation [2, 3]. Subse-

quently, tissue hypoxia and dysoxia due to heterogeneity of the microcirculation will

occur [4]. Fluid resuscitation may not only help resolve some of these issues but also

lead to the activation of oxidative pathways in itself, resulting in a heterogeneous distri-

bution of blood flow and tissue oxygenation, especially in the renal cortex [5, 6].

Because reactive oxygen species (ROS) participate in the pathophysiology of endotoxemic

shock, it has been suggested that moderating the oxidative stress and inflammatory reaction

would translate into improving the microcirculation and oxygenation of the tissues. Previ-

ous studies have demonstrated an interest in the use of antioxidants for preventing sepsis-

induced damage in these organs [7–9]. Indeed, the experimental literature is full of studies

of drugs that target and are effective at dampening inflammation and oxidative stress. Some

trials have reported several anti-inflammatory or antioxidant drugs with discordant effects

on major outcomes [10, 11]. In fact, antioxidant therapies for specific organs might be of

interest. Acute kidney injury (AKI) and acute lung injury are particularly common compli-

cations of sepsis, and the development of either increases mortality probably because these

organs are more sensitive to inflammation and oxidative stress insults. Thus, the kidney

could benefit from antioxidant drugs.

A common approach for the inhibition of oxidant-mediated injury is the use of

glutathione-modulating agents such as sulfhydryl or thiol compounds. Among all the

drugs used to interact with this pathway, N-acetylcysteine (NAC) is the most studied

for its lung and renal protective effects [12–16]. NAC is a thiol compound with antioxidant

and vasodilatory properties [12]. NAC is regarded as an important antioxidant as it is a

source of sulfhydryl and glutathione groups in cells and, due to its interaction with ROS, is

a scavenger of free radicals. In septic patients, the endogenous antioxidant glutathione is

depleted [17]. Decreased levels of glutathione may lead to decreased protection of cell

membranes against oxygen radicals. NAC serves as a precursor of glutathione and

can replenish the intracellular glutathione stores [12]. Moreover, NAC targets kidney

microcirculatory blood flow [18, 19]. NAC has also been widely studied for its

nephroprotective effects in various settings.

Hypoxia and inflammation have an interdependent relationship. Several molecular

pathways of cross-talk between hypoxia and inflammation in the kidney have been

identified [20–22]. From a physiological perspective, although hypoxia may lead to

inflammation and vice versa, it is unclear whether correcting or modulating either of

these states would translate into better tissue oxygenation and improved outcomes.

NAC would be interesting for testing whether the modulation of inflammation could

correct tissue hypoxia during sepsis.

To date, no study has focused on tissue oxygenation in specific organs such as the

kidney but rather demonstrated that either pretreatment or post-treatment with NAC

decreased the markers of organ injury. In this study, we assessed kidney tissue oxygenation

in an endotoxemic shock model resuscitated with balanced hydroxyethyl starch—Ringer’s

acetate either with or without supplementation with NAC. We sought to promote blood

flow and oxygenation to the organs by the means of reducing inflammation and

oxidative stress.
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Methods
Animals

All experiments in this study were approved by the institutional Animal Experimentation

Committee of the Academic Medical Center of the University of Amsterdam (DFL102538).

The care and handling of the animals were in accordance with the guidelines for

Institutional Animal Care and Use Committees. The study was conducted in accordance

with the Declaration of Helsinki. Experiments were performed on albino Wistar rats (Harlan

Netherlands BV, Horst, The Netherlands) with a mean ± SD body weight of 325 ± 6 g.

Surgical preparation

All animals were anesthetized with an intraperitoneal injection of a mixture of 90 mg/kg

ketamine (Nimatek®, Eurovet, Bladel, The Netherlands), 0.5 mg/kg dexmedetomidine

(Dexdomitor, Pfizer Animal Health BV, Capelle aan den IJssel, The Netherlands), and

0.05 mg/kg atropine-sulfate (Centrafarm Pharmaceuticals BV, Etten-Leur, The

Netherlands). After a tracheotomy was performed, the animals were mechanically

ventilated with a fraction of inspired oxygen (FiO2) of 0.4. Body temperature was

maintained at 37 ± 0.5 °C during the entire experiment by an external thermal heating

pad. Ventilator settings were adjusted to maintain an arterial partial pressure of

carbon dioxide (PaCO2) between 35 and 40 mmHg. For drug and fluid administration

as well as hemodynamic monitoring, vessels were cannulated with polyethylene catheters

with an outer diameter of 0.9 mm (Braun, Melsungen, Germany). A catheter in the right

carotid artery was connected to a pressure transducer to monitor the mean arterial blood

pressure (MAP) and heart rate. The right jugular vein was cannulated for continuous

infusion of Ringer’s lactate (Baxter, Utrecht, The Netherlands) at a rate of 15 ml/kg/h and

for the maintenance of anesthesia. The right femoral artery was cannulated for drawing

blood samples; the right femoral vein, for drug administration. The left kidney was

exposed, decapsulated, and immobilized in a Lucite kidney cup (K. Effenberger, Pfaffingen,

Germany) via an ~4-cm incision in the left flank in each animal. Renal vessels were care-

fully separated to preserve the nerves and adrenal gland. A perivascular ultrasonic transi-

ent time flow probe was placed around the left renal artery (type 0.7 RB Transonic

Systems Inc., Ithaca, NY, USA) and connected to a flow meter (T206, Transonic Systems

Inc., Ithaca, NY, USA) to continuously measure renal blood flow (RBF). The left ureter

was isolated, ligated, and cannulated with a polyethylene catheter for urine collection.

After the surgical preparation, one optical fiber was placed 1 mm above the decapsulated

kidney, and another optical fiber was placed 1 mm above the renal vein to measure renal

microvascular and venous oxygenation using phosphorimetry. A small piece of aluminum

foil was placed on the dorsal side of the renal vein to prevent the underlying tissues from

contributing to the phosphorescence signal in the venous PO2 measurements. The surgi-

cal field was covered with a humidified gauze compress throughout the entire experiment

to prevent drying of the exposed tissues.

Experimental protocol

After a 30-min stabilization, the rats were randomized into the five following groups at

baseline: (1) control group, (2) control +NAC, (3) endotoxemic shock with lipopolysaccharide

(LPS) without fluid resuscitation, (4) LPS + fluid resuscitation, and (5) LPS + fluid

Ergin et al. Intensive Care Medicine Experimental  (2016) 4:29 Page 3 of 17



resuscitation + NAC (150 mg/kg/h). The groups received either an intravenous bolus

of 5 mg/kg LPS (LPS group; Escherichia coli 0127:B8, Sigma, Paris, France; three

groups of eight rats each) or vehicle (control group, two groups of eight rats each).

Animals were observed or kept in shock for over 120 min. Fluid resuscitation (15 ml/kg/h)

was then started and maintained for 180 min in the LPS groups with 6 % hydroxyethyl

starch (HES130/0.4) dissolved in Ringer’s acetate (HES-RA; Volulyte® 6 %, Fresenius Kabi

Deutschland GmbH, Germany) as a balanced colloid solution. NAC was administered to

the appropriate groups at a rate of 150 mg/kg/h as previously reported [15]. An LPS group

was not resuscitated to serve as a shock control. Time points for the measurements were

baseline (T0), during shock 120 min after administration of LPS (T1), 30 min after initiating

fluid resuscitation (early reperfusion phase) (T2), and 120 min after starting fluid resuscita-

tion (late reperfusion phase) (T3), which was the final endpoint of the experiment (Fig. 1).

Blood gas measurements and biochemistry

Arterial blood samples of 0.5 ml were collected from the femoral artery at T0, T1, T2,

and T3. The blood samples were replaced by the same volume of balanced colloid solution.

The samples were used to determine blood gas parameters (Radiometer ABL 505 Blood

Gas Analyzer, Copenhagen, Denmark). The hematocrit and the levels of potassium,

bicarbonate, and the anion gap were recorded by the analyzer.

Measurement of renal microvascular oxygenation and venous PO2

The renal microvascular partial pressure of oxygen (μPO2) and renal venous PO2

(rvPO2) were measured by oxygen-dependent quenching of phosphorescence lifetimes

of the phosphorescent dye Oxyphor G2 (Oxygen Enterprises Ltd., Philadelphia, PA,

USA) as described previously [23, 24]. A total of 6 mg/kg IV over 5 min was adminis-

tered followed by 30 min of stabilization before recording baseline measurements.

Calculation of derivatives of oxygenation parameters and renal vascular resistance

Renal oxygen delivery was calculated using the following formula: DO2ren (ml/min) =

RBF × arterial oxygen content (1.31 × hemoglobin × SaO2) + (0.003 × PaO2), where

SaO2 is the arterial oxygen saturation and PaO2 is the arterial partial pressure of oxygen.

Renal oxygen consumption was calculated using the following formula: VO2ren

(ml/min/g) = RBF × (CaO2 − CvO2), where the renal venous oxygen content (CvO2)

was calculated as (1.31 × hemoglobin × SrvO2) + (0.003 × rvPO2). The SrvO2ren was

calculated using the Hill equation with P50 = 37 Torr (4.9 kPa) and the Hill coef-

ficient = 2.7. An estimation of the renal vascular resistance (RVR) was defined as

RVR (dynes sec cm−5) = (MAP/RBF) × 100.

Fig. 1 Timeline of the experimental protocol
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Assessment of kidney function

Creatinine clearance (Clcrea [ml/min]) was assessed as an index of the glomerular filtra-

tion rate. Clearance was calculated using the following formula: Clcrea = (Ucrea ×V)/

Pcrea, where Ucrea is the concentration of creatinine in urine, V is the urine volume per

unit time, and Pcrea is the concentration of creatinine in the plasma. The renal energy

efficiency for sodium transport (VO2/TNa) was assessed using a ratio calculated from

the total amount of VO2 over the total amount of sodium reabsorbed (TNa, mmol/min)

according to the following formula: (Clcrea × PNa) −UNa ×V.

NO metabolism

The index of total nitric oxide (NO) production is the sum of both nitrite and nitrate

accumulated in tissue samples. To determine this index, a saturated solution of van-

adium (III) chloride (VCl3) in 1 mol/l HCl was used as a reducing agent. At a

temperature of 90 °C, the VCl3 reagent quantitatively converts nitrite, nitrate, and S-

nitroso compounds to NO in a glass reaction vessel. NO was then flushed out of the

reaction vessel by the flow of helium gas and was then measured using a Sievers NO

analyzer (General Electric Company, GE Water & Process Technologies Analytical

Instruments) to detect chemiluminescence as the amount of light from the ozone-NO

reaction in the measurement chamber of the analyzer. NO levels were determined in

homogenized frozen kidney tissues. A ratio of tissue NO to tissue protein content was

used for standardization of NO release per gram of protein.

Glycocalyx component assessments

Hyaluronan is the main component of the endothelial glycocalyx, and alterations in its

concentration are attributed to glycocalyx volume loss. Inhibition of tumor necrosis

factor-alpha protects against endotoxin-induced endothelial glycocalyx perturbation.

Plasma hyaluronan concentrations were determined using a Corgenix hyaluronic acid

test kit (Corgenix Inc., Westminster, CO, USA) based on an enzyme-linked hyaluronic

acid-binding protein assay.

Measurement of oxidative stress and inflammatory cytokines

All kidneys were homogenized in cold 5 mM sodium phosphate buffer. The homogenates

were centrifuged at 12,000g for 15 min at 4 °C, and the supernatants were used to deter-

mine TNF-α, IL-6, hyaluronic acid, malondialdehyde (MDA), and protein carbonyl levels.

The levels of these markers were expressed as per gram of protein (Bradford assay).

To determine the oxidative stress and inflammatory cytokines levels, enzyme-linked

immunosorbent assay (ELISA) kits were used. Tumor necrosis factor-α (TNF-α)

(DY510, R&D system, Inc. Minneapolis, USA), interleukin-6 (IL-6) (DY506, R&D sys-

tem, Inc. Minneapolis, USA), tissue MDA, and protein carbonyl were determined in

homogenized tissue samples.

Immunohistochemical analysis

Kidney tissues were fixed in 4 % formalin and embedded in paraffin. After preparation,

kidney sections were incubated with a neutrophil gelatinase-associated lipocalin (NGAL)

antibody (NGAL antibody 41105, Abcam, Cambridge, UK) and a polyclonal antibody to
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rat liver-type fatty acid protein (L-FABP) (HP8010, Hycult Biotect, Uden Holland). Anti-

bodies were diluted in a large volume of UltrAb Diluent (TA-125-UD, Thermo Fisher

Scientific, Breda, Holland). The slides were counterstained with Mayer’s hematoxylin

(LabVision TA-125-MH Thermo Fisher Scientific, Breda, Holland) and mounted in a

vision mount (LabVision, TA-060-UG, Thermo Fisher Scientific, Breda, Holland) after

washing in distilled water. Both the intensity and the distribution of L-FABP and NGAL

staining were scored. For each sample, a histological score (HSCORE) value was derived

by summing the percentages of cells that were stained at each intensity multiplied by the

weighted intensity of the staining: HSCORE = S Pi (i + 1), where i is the intensity score

and Pi is the corresponding percentage of the cells.

Statistical analyses

The results are expressed as the mean ± SD. Statistical significance was calculated by one-

way and two-way analysis of variance (ANOVA) followed by either Tukey’s or Bonferroni’s

multiple comparison tests using GraphPad Prism (GraphPad Prism, Version 5, Software

Program, San Diego, CA, USA). p < 0.05 was considered statistically significant.

Results
Systemic and renal hemodynamic parameters

The evolution of systemic and renal hemodynamics is presented in Table 1. Infusion of

LPS induced an early drop in the MAP (76.8 ± 9.3 mmHg versus 45.8 ± 7.9 mmHg, p <

0.001) and RBF (4.5 ± 1.5 ml/min versus 0.7 ± 0.6 ml/min, p < 0.001) in the control

group versus the LPS group, respectively, at T3. Fluid resuscitation with HES-RA both

with and without NAC significantly improved RBF compared to the LPS alone group

(p < 0.05). Both HES-RA and HES-RA +NAC significantly decreased the RVR com-

pared to LPS alone (p < 0.001). After LPS, the addition of NAC to the fluid did not re-

sult in improved hemodynamic parameters compared to fluid resuscitation alone. The

infusion of NAC led to a decrease in the MAP in the absence of LPS (57.3 ± 5.6 mmHg

versus 76.8 ± 9.3 mmHg in the control group, p < 0.001).

Renal microvascular oxygenation

The percentage variations in CμPO2, MμPO2, DO2ren, and VO2ren between baseline

(T0) and the end of the experiment (T3) are shown in Fig. 2. Compared to the control

groups, LPS infusion induced a significant decrease in CμPO2 (40.6 ± 8.8 mmHg versus

68.2 ± 4.1 mmHg in the control group at T3, p < 0.001) and MμPO2 (32.2 ± 7.9 mmHg

versus 51.6 ± 3.2 mmHg in the control group, p < 0.001). Fluid resuscitation with HES-RA

alone did not improve either CμPO2 or MμPO2. HES-RA combined with NAC signifi-

cantly improved CμPO2 during sepsis (p < 0.01). LPS induced a significant decrease in

DO2ren and VO2ren (8.3 ± 6.1 ml O2/min in the LPS group versus 67.2 ± 23.2 ml O2/min

in the control group at T3 and 7.8 ± 6.5 ml O2/min in the LPS group versus 32.9 ± 10 ml

O2/min in the control group at T3, p < 0.05, respectively). Fluid resuscitation with or with-

out NAC significantly improved VO2ren compared to the LPS alone group (p < 0.05). Of

note, the addition of NAC to the control group also increased VO2ren compared to the

control group alone (p < 0.05). The hematocrit values are reported in Table 3. A signifi-

cant decrease in hematocrit occurred after fluid resuscitation in both groups compared to
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the control and LPS alone groups (p < 0.001). The magnitude of hemodilution in both

groups was in the same range.

LPS induced a significant increase in ER% O2 at T1, T2, and T3 compared to the control

group (p < 0.01, p < 0.01, and p < 0.001, respectively), and this value was only improved in

LPS + HES-RA group at T2. In the control group receiving NAC, ER%O2 was also

increased at T3 compared to control (p < 0.001).

Kidney function and biomarkers of kidney injury

The evolution of TNa+, VO2ren/TNa+, ClCrea, and EFNa+ at different time points is pre-

sented in Table 2. TNa+ levels were lower in the LPS, LPS + HES-RA, and LPS +HES +

RA +NAC groups (p < 0.001) than the control group at T1, T2, and T3. Fluid resuscita-

tion did not restore these values. The addition of NAC also decreased the TNa + in the

control + NAC group compared to the control group (p < 0.01). VO2ren/TNa+ increased

in LPS groups receiving HES-RA and HES + RA +NAC at T3 compared to the control

group (p < 0.05 and p < 0.001, respectively) and the LPS alone group (p < 0.05 and p <

0.001, respectively). Compared to the control and LPS alone groups, EFNa+ values were

increased in the LPS groups treated with HES-RA with and without NAC at T2 and T3.

NAC administration in the control group tended to decrease TNa+ and EFNa+ without

reaching a significant level. Fluid resuscitation improved urine output regardless of the

addition of NAC compared to the LPS group (p < 0.001). No effect of NAC on urine

output was noted in the control + NAC group compared to the control group, but a

significant decrease in Clcreat was observed (p < 0.001).

Table 1 Evolution of systemic and renal hemodynamics parameters during the experiment

T0 (baseline) T1 (shock) T2 (30 min) T3 (120 min)

MAP (mmHg)

Time control 102 ± 9.0 86.3 ± 13.4 80.1 ± 8.8 76.8 ± 9.3

Control + NAC 87.7 ± 7.6 75.3 ± 10.5 70.5 ± 8.0 57.3 ± 5.6***

LPS 101 ± 11.1 56.8 ± 10.5*** 53.7 ± 9.4*** 45.8 ± 7.9***

LPS + HES-RA 92.1 ± 8.7 55.6 ± 9.5*** 65.5 ± 4.9*, + 51.6 ± 3.7***

LPS + HES-RA + NAC 98.8 ± 8.7 49.8 ± 8.5*** 64.1 ± 4.7** 52.6 ± 6.1***

RBF (ml/min)

Time control 5.4 ± 0.6 4.8 ± 0.8 5.3 ± 0.9 4.5 ± 1.5

Control + NAC 5.7 ± 0.7 4.3 ± 0.9 4.8 ± 1.5 4 ± 1.1

LPS 5.7 ± 1.4 1.3 ± 0.7*** 1.4 ± 0.5*** 0.7 ± 0.6***

LPS + HES-RA 6.6 ± 0.3 1.9 ± 1.5*** 5.6 ± 1.8+++ 5.0 ± 0.4+++

LPS + HES-RA + NAC 5.5 ± 0.4 1 ± 0.4*** 3.5 ± 0.9*, ++ 4.8 ± 2.2+++

RVR )dyn.s.sec−5)

Time control 1910.2 ± 260.5 1793.7 ± 227.4 1524.3 ± 188.2 1861.3 ± 751.2

Control + NAC 1548.6 ± 249.2 1782.6 ± 368.6 1606.7 ± 583.2 1521.9 ± 511.1

LPS 1774.8 ± 302.4 5911.5 ± 3333.4*** 4182.9 ± 829.7* 10,372 ± 5182.2***

LPS + HES-RA 1410 ± 152.2 3293.2 ± 1978.9+ 1130.2 ± 348.1++ 1004.3 ± 48.3+++

LPS + HES-RA + NAC 1787.2 ± 236 5795.8 ± 2517.4*** 1909.8 ± 375.7 1199.1 ± 318.3+++

LPS lipopolysaccharide, HES-RA hydroxyethyl starch-ringer acetate, NAC N-acetylcysteine
Values are presented as mean ± SD *p < 0.05, **p < 0.01, and ***p < 0.001 control versus other groups; +p < 0.05,
++p < 0.01, and +++p < 0.001 LPS versus other groups
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Biomarkers of AKI (NGAL and L-FABP) were significantly increased in the kidney after

LPS infusion (p < 0.05 and p < 0.001, respectively, versus the control group) (Fig. 3). The re-

suscitation fluid combined with NAC significantly decreased these biomarkers compared to

the LPS alone group (p < 0.001 and <0.05, respectively). Moreover, L-FABP was lower in the

group of septic rats resuscitated with HES-RA+NAC than with HES-RA alone (p < 0.001).

Plasma electrolytes and acid-base status

Bicarbonate and plasma lactate levels, pH, base excess, and anion gap with K+ are shown in

Table 3. LPS infusion significantly increased the plasma lactate level and anion gap, which

could not be corrected by the administration of HES-RA either with or without NAC (p <

0.001) compared to the control group. Base excess, pH, and bicarbonate levels were simi-

larly decreased after LPS infusion and were partially corrected by fluid resuscitation. NAC

infusion alone in the control group resulted in a significant decrease in pH, base excess, and

bicarbonate levels compared to the control group (p < 0.01). NAC administration worsened

the acid-base status in the LPS resuscitated and control groups. The level of bicarbonate

Fig. 2 Percentage change of renal microvascular oxygen tension, oxygen delivery, and consumption from
baseline to T3. In the renal cortex (CμpO2) (a), in the medulla (MμpO2) (b), renal oxygen delivery
(DO2ren) (c), and renal oxygen consumption (VO2ren) (d). *p < 0.05, **p < 0.01, *p < 0.001 versus
control; +p < 0.05 LPS versus LPS group
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and base excess were significantly lower in rats resuscitated with fluid plus NAC than with

fluid alone (p < 0.01).

Oxidative stress and inflammatory cytokines

The levels of biomarkers of oxidative stress, pro-inflammatory cytokines, and products

of glycocalyx degradation are represented in Fig. 4. The levels of TNF-α (3A) and IL-6

(3B) in kidney homogenates from the LPS group were significantly increased compared

to the control group (528.1 ± 143.9 pg/mg protein versus 291.8 ± 99.1 pg/mg protein, p <

0.05; and 1246 ± 441 pg/mg protein versus 753.8 ± 122 pg/mg protein, p < 0.05, respect-

ively). The same results were observed regarding hyaluronic acid (HA) (3C), nitric oxide

Table 2 Parameters of renal function and excretion at different time points of the experiment

T0 (baseline) T1 (shock) T2 (30 min) T3 (120 min)

TNa+ (mmol/min−1)

Time control 15.3 ± 9.6 14.1 ± 7.0 18.8 ± 6.8 19.7 ± 4.7

Control + NAC 15.0 ± 6.4 13.2 ± 6.5 15.9 ± 6.5 9.5 ± 4.3**

LPS 12.3 ± 5.5 0.00 ± 0.00*** 0.00 ± 0.00*** 0.00 ± 0.00***

LPS + HES-RA 12.0 ± 8.3 0.00 ± 0.00*** 5.0 ± 1.12*** 2.2 ± 1.3***

LPS + HES-RA + NAC 11.9 ± 5.7 0.00 ± 0.00*** 2.8 ± 2.8*** 2.2 ± 1.8***

VO2/TNa
+

Time control 1.77 ± 1.6 2.19 ± 1.3 1.59 ± 0.6 1.79 ± 0.7

Control + NAC 1.36 ± 0.4 2.19 ± 0.9 1.95 ± 1.18 6.32 ± 3.9

LPS 2.5 ± 1.2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

LPS + HES-RA 2.24 ± 1.1 0.00 ± 0.00 6.06 ± 1.7 17.17 ± 7.1*, +

LPS + HES-RA + NAC 1.97 ± 1.3 0.00 ± 0.0* 23.36 ± 22.2 28.53 ± 28***, +++

ClCrea (ml/min)

Time control 0.11 ± 0.6 0.10 ± 0.04 0.14 ± 0.04 0.14 ± 0.03

Control + NAC 0.11 ± 0.04 0.09 ± 0.04 0.11 ± 0.04 0.06 ± 0.03***

LPS 0.09 ± 0.04 0.00 ± 0.00*** 0.00 ± 0.00*** 0.00 ± 0.00***

LPS + HES-RA 0.09 ± 0.06 0.00 ± 0.00*** 0.05 ± 0.01***, + 0.02 ± 0.01***

LPS + HES-RA + NAC 0.09 ± 0.04 0.00 ± 0.00*** 0.04 ± 0.01*** 0.02 ± 0.01***

EFNa+

Time control 4.8 ± 4.7 13.2 ± 5.7 11.9 ± 4.9 10.4 ± 2.4

Control + NAC 2.3 ± 0.8 3.22 ± 1.7 2.9 ± 1.7 6.9 ± 6.6

LPS 3.7 ± 1.4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

LPS + HES-RA 3.5 ± 2.8 0.00 ± 0.00 35.3 ± 7.3**, +++ 17.1 ± 8.1

LPS + HES-RA + NAC 4.4 ± 3.9 0.00 ± 0.00 45.8 ± 36.7***, +++ 31.4 ± 28.4***, +++

Urine volume (ml)

Time control 0.39 ± 0.14 0.53 ± 0.13 0.45 ± 0.13 0.19 ± 0.03

Control + NAC 0.25 ± 0.09 0.34 ± 0.17 0.2 ± 0.04 0.16 ± 0.06

LPS 0.31 ± 0.13 0.06 ± 0.09*** 0.04 ± 0.05*** 0.02 ± 0.05***

LPS + HES-RA 0.37 ± 0.3 0.12 ± 0.19*** 0.6 ± 0.23+++ 0.16 ± 0.08+++

LPS + HES-RA + NAC 0.33 ± 0.26 0.04 ± 0.09*** 0.65 ± 0.47+++ 0.2 ± 0.13+++

Values are presented as mean ± SD
TNa+ tubular sodium reabsorption, Clcreat clearance of creatinine, LPS lipopolysaccharide, HES-RA hydroxyethyl starch-ringer
acetate, NAC N-acetylcysteine
*p < 0.05, **p < 0.01, and ***p < 0.001 versus control; +p < 0.05 and +++p < 0.001 versus LPS
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(3D), and MDA (3E) after LPS infusion (p < 0.05). The addition of NAC to HES-RA during

fluid resuscitation resulted in a significant lower level of HA and nitric oxide compared to

the LPS group (p < 0.01). Infusion of HES-RA alone decreased the levels of MDA compared

to LPS alone (p < 0.01) (3E). Protein carbonyl levels were not altered (3E).

Discussion
In the present study, we found that fluid supplemented with NAC improved cortical

renal oxygenation, oxygen delivery, and oxygen consumption compared to the LPS

group. Fluid resuscitation alone was partially effective in correcting kidney hypoxia but

did not reach a significant level compared to the LPS group. The addition of NAC to

the resuscitation fluid did not further improve systemic or renal hemodynamics com-

pared to HES-RA alone. It has been suggested that a specific effect of NAC on micro-

vascular oxygenation exists independent of renal macrovascular perfusion. In an

experimental study, Heyman et al. showed that NAC induced vasodilation in a pre-

constricted renal microvasculature rat model [18]. The vasculature may be similarly

constricted after LPS infusion leading to microcirculation heterogeneity [25]. Although

creatinine levels did not differ between septic rats receiving fluids either with or with-

out NAC, the fluid resuscitation combined with NAC decreased the levels of renal NO,

hyaluronic acid, and early markers of acute kidney injury such as NGAL or L-FABP.

Previous studies demonstrated a significant decrease in inflammatory biomarkers in

specific organs such as the lungs and kidneys in models of sepsis [14–16, 26–29]. How-

ever, none of these studies reported the beneficial effects of NAC on tissue oxygenation

during sepsis by decreasing oxidative stress and inflammation.

Several studies using microcirculatory techniques have now questioned the significance of

arterial RBF and have focused on the renal microcirculation as the hemodynamic culprit in

the pathophysiology of septic AKI [6, 25, 30]. Microcirculatory dysfunction may contribute

to renal hypoxia even in the absence of overt renal hypoperfusion. The microcirculation of

the renal cortex has been shown to be severely injured in animal models of sepsis. After

LPS infusion in rats, Legrand et al. showed that fluid resuscitation could not fully restore

renal microcirculatory dysfunction [6]. In dogs, endotoxemia was found to be associated

Fig. 3 Immunostaining intensity (HSCORE) of NGAL (a) and L-FABP (b) in kidney cortex of all groups.
*p < 0.05, ***p < 0.001 versus control group; +p < 0.05, +++p < 0.001 versus LPS group, ###p < 0.001
versus LPS + HES-RA group
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with renal hypoperfusion and hypoxia in the renal cortex but was concomitant with

increased renal venous PO2, supporting the concept that convective shunting of oxygen

may contribute to the development of tissue hypoxia [31]. In our study, the LPS-induced

renal microvascular heterogeneity and hypoxia appeared to be corrected with the NAC-

supplemented fluid.

Table 3 Time-course of acid-base status, lactate levels, and hematocrit resuscitated with and without
the addition of NAC

T0 (baseline) T1 (shock) T2 (30 min) T3 (120 min)

pH

Time control 7.37 ± 0.03 7.39 ± 0.06 7.42 ± 0.03 7.42 ± 0.04

Control + NAC 7.48 ± 0.12 7.42 ± 0.03 7.38 ± 0.02 7.32 ± 0.05*

LPS 7.36 ± 0.03 7.27 ± 0.06** 7.26 ± 0.07*** 7.2 ± 0.07***

LPS + HES-RA 7.36 ± 0.03 7.26 ± 0.07*** 7.31 ± 0.07* 7.27 ± 0.05***

LPS + HES-RA + NAC 7.37 ± 0.04 7.26 ± 0.09*** 7.27 ± 0.08*** 7.20 ± 0.03***

HCO3
− (mmol/L)

Time control 20.6 ± 0.9 21 ± 0.6 21.2 ± 1.3 21.6 ± 1.3

Control + NAC 18.8 ± 0.6 18.4 ± 1.5* 19.3 ± 1.2 14.2 ± 3.8***

LPS 20.2 ± 0.7 15 ± 0.9*** 15.3 ± 1.2*** 12.8 ± 0.5***

LPS + HES-RA 21.6 ± 0.7 14.8 ± 1.5*** 18.1 ± 0.9***, ++ 16.7 ± 1.6***, +++

LPS + HES-RA + NAC 20.7 ± 0.8 14.7 ± 2.5*** 16.6 ± 1.6*** 14 ± 1.7***, ##

Base excess (mmol/L)

Time control −3.5 ± 1.2 −2.7 ± 1.6 −1.7 ± 1.3 −1.8 ± 1.5

Control + NAC −3.5 ± 0.5 −4.4 ± 1.7 −4.5 ± 1.3 −8.9 ± 2.4***

LPS −4 ± 1.3 −10.8 ± 1.9*** −10.5 ± 1.7*** −14.1 ± 1.3***

LPS + HES-RA −2.9 ± 1.1 −11.3 ± 2.7*** −7 ± 2***, ++ −8.9 ± 1.9***, +++

LPS + HES-RA + NAC −3.4 ± 1.5 −11.2 ± 4.1*** −9.1 ± 2.8*** −12.5 ± 1.7***, ##

Anion gap K+ (mmol/L)

Time control 17.7 ± 0.8 18.0 ± 0.7 16.4 ± 0.5 16.8 ± 1.3

Control + NAC 18.9 ± 2.0 18.5 ± 2.0 17.0 ± 1.2 18.9 ± 4.8

LPS 18.9 ± 2.3 21.8 ± 1.1 21.6 ± 1.8 23.2 ± 1.6***

LPS + HES-RA 17.5 ± 1.3 22.7 ± 1.3 19.2 ± 1.0 20.9 ± 2.5***

LPS + HES-RA + NAC 18.4 ± 1.0 22.5 ± 2.5** 20.6 ± 2.3* 23.1 ± 1.9***

Lactate (mmol/L)

Time control 2.32 ± 0.52 2.22 ± 0.34 2.08 ± 0.31 1.73 ± 0.27

Control + NAC 3.10 ± 0.64 2.92 ± 0.76 2.17 ± 0.36 2.10 ± 0.33

LPS 2.42 ± 0.32 3.08 ± 0.28 3.08 ± 0.5 4.32 ± 0.6***

LPS + HES-RA 1.92 ± 0.2 3.32 ± 0.55 2.75 ± 0.48 5.08 ± 1.83***

LPS + HES-RA + NAC 2.70 ± 0.21 3.83 ± 1.36** 3.30 ± 1.17* 4.98 ± 1.21***

Hct (%)

Time control 49.6 ± 1.3 41.6 ± 1.9 39 ± 2.9 33.3 ± 3

Control + NAC 48.8 ± 2.6 42.8 ± 4.4 41.1 ± 4.2 33.8 ± 2.6

LPS 49.3 ± 4.0 39.6 ± 3.0 35.1 ± 2.9 34.0 ± 3.5

LPS + HES-RA 49.3 ± 1.7 43.3 ± 2.5 30.1 ± 4.5***, + 17.5 ± 3***, +++

LPS + HES-RA + NAC 48.6 ± 0.8 44.1 ± 3.2+ 33.0 ± 2.6** 18.0 ± 2.0***, +++

LPS lipopolysaccharide, HES-RA hydroxyethyl starch-ringer acetate, NAC N-acetylcysteine
Values are presented as mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001 versus control; ++p < 0.05, +++p < 0.001 versus LPS;
##p < 0.01 versus LPS + HES-RA
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We also observed negative effects of NAC infusion. Delayed hypotension occurred in

the control + NAC group, highlighting the vasodilatory effects of this compound as

previously described [12, 32]. The mechanism involved in this lowering effect might be

mediated by the interaction of sulfhydryl groups with enzymes such as the guanylate

cyclase, which is the primary receptor for NO [32]. This drop in the MAP may contribute

to tissue hypoperfusion and hypoxia as well as the lower pH observed in the control +

NAC group compared to the control group. However, no significant change was observed

Fig. 4 Levels of biomarkers of oxidative stress and pro-inflammatory cytokines in renal tissue. Renal tissue
TNF-α (a), IL-6 (b), hyaluronic acid (c), nitric oxide (d), MDA (e), and protein carbonyl (f). *p < 0.05, **p < 0.01,
***p < 0.001 versus control; +p < 0.05, ++p < 0.01 versus LPS group
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in renal blood flow measured in the renal artery. Conflicting data exist between experi-

mental and human clinical studies regarding the effects of NAC on regional blood flow

and cardiac output [19, 33–37]. First, NAC administration was shown to improve survival

in experimental models of peritonitis-induced sepsis [38, 39]. In mongrel dogs subjected

to endotoxemia, Zhang et al. demonstrated the myocardial protective effects of NAC

pretreatment (150 mg/kg) with enhanced oxygen delivery but lower systemic and pul-

monary pressures [37]. In contrast, in a study involving 20 patients with septic shock,

NAC infusion (150 mg/kg for 15 min followed by continuous infusion) that was initiated

within 24 h after the onset of septic shock resulted in a decrease in left ventricular stroke

work—revealing myocardial depression—without a significant impact on MAP at 48 h

after treatment initiation [33]. In a similar population, Rank et al. demonstrated the exact

opposite effect with an improvement in liver blood flow, oxygen delivery, and oxygen

consumption related to an increase in cardiac index [34]. However, the infusion of NAC

lasted less than 2 h in this latter study. Agustí et al. reported an increase in the cardiac

index associated with vasodilatation but without improvements in splanchnic micro-

circulation after NAC infusion in patients presenting with septic shock and multiple

organ failure [35]. Clinical studies yielded controversial results with the use of NAC

in sepsis [11]. NAC treatment during the first hours of sepsis or septic shock may

decrease peroxidative stress [40], improve hepatic function [34], and enhance tissue

oxygenation and cardiac function [41], whereas delayed administration adversely

affected the outcomes of critically ill patients with multiple organ failure [33, 42].

Most published studies have examined the effects of NAC when given as a pretreat-

ment, e.g., before the insult. Here, we evaluated the ability of NAC when administered

during the resuscitation process to correct tissue hypoxia and inflammation already

present. It seems that the beneficial effects on tissue oxygenation, if any, are not similar if

NAC is administered before or after the insult. The effects also depend on the time

elapsed since the insult. We showed that NAC-supplemented fluid did not provide

additional benefits on the acid status and renal function compared to fluid alone. Only

kidney oxygenation was significantly higher in the group receiving fluid supplemented

with NAC compared to the LPS alone group, whereas fluid alone did not reach a level of

significance. Pretreatment with NAC appeared to be more efficient than post-injury treat-

ment in protecting tissues against oxidative stress and inflammation in models of sepsis

and ischemia/reperfusion injury. Due to the mechanisms of action of NAC, it is conceiv-

able that it would be easier to prevent certain pathways from being activated rather than

to modulate already highly activated signals with redundant or alternative pathways.

The effects of NAC on renal oxygenation could be mediated by different mechanisms.

First, tissue NO levels were significantly increased after LPS infusion. By decreasing NO

levels in the cortex, NAC combined with fluid administration may improve microvascular

dysfunction, microvascular delivery of oxygen, and cortical oxygenation. Similarly, our

group previously demonstrated that the prostaglandin analog iloprost restored kidney

function in a rat model of endotoxemia and prevented the occurrence of hypoxic regions

[43]. The improvement of renal microvascular oxygenation was mediated in part by the

inhibition of inducible nitric oxide synthase expression in the kidney. Another major

player involved in endothelial dysfunction in sepsis-induced AKI is the widespread dam-

age to the endothelial glycocalyx, which may contribute to microvascular dysfunction via

impaired flow-dependent vasodilatation. Hyaluronic acid levels reflect the disruption of
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the glycocalyx [44]. In the present study, hyaluronic acid levels were significantly

increased after LPS infusion. Fluid resuscitation either with or without the addition of

NAC significantly dampened these levels. However, the decrease was more prevalent with

NAC treatments, but all of the significant benefits were due to the fluids as opposed to

NAC. NAC may still further improve microvascular oxygenation by decreasing endothe-

lial glycocalyx damage in addition to fluid resuscitation. In contrast, a clinical study moni-

tored volume loading with HES during elective surgery (20 ml/kg) and observed

increased serum glycocalyx biomarkers with HES alone [45]. In our study, fluid resuscita-

tion with HES seemed to be beneficial with regard to these biomarkers levels. One of the

main pathways of glycocalyx disruption is thought to be the formation of ROS such as

peroxynitrite. As NAC is a well-known scavenger of ROS, we measured the tissue levels

of malondialdehyde as a marker of lipid peroxidation. We did not observe a significant

decrease when using NAC-supplemented fluid compared to fluid alone. This result can

be explained because of the high dose of NAC in our study. Some authors have previously

suggested that high doses of NAC may increase MDA levels, whereas lower doses may

decrease MDA levels [46]. Additionally, a lack of effect of NAC on lipid peroxidation in

cases of established endotoxemia has been shown [47].

Limitations

In the light of the ongoing debate about the deleterious effects of HES on the kidney, a pos-

sible limitation of our study is our use of HES as a resuscitation fluid. However, the present

study is a mechanistic study wherein we investigated whether we could ameliorate the inflam-

matory effects of fluid administration in a sepsis model. In our experience, all fluids cause in-

flammation [48], and it is the fluid volume that determined the extent of injury. It could be

argued that we should have chosen a balanced crystalloid solution instead of a colloid-based

solution. However, crystalloid solutions have issues as well. For example, Ringer’s lactate

causes even more inflammation than HES [49, 50], and we would also have had to administer

a larger volume to maintain blood pressure causing more hemodilution. We chose a colloid

solution to keep the amount of fluid required to correct blood pressure to a minimum. We

could have used albumin, but even albumin can promote renal failure, as has been shown in a

recent study in cardiac surgery [51]. In conclusion, arguably, all fluids have deleterious effects

on the kidney to a greater or lesser extent. However, in this proof of concept study,

we hope to have introduced the idea that controlling the inflammatory component

imposed by fluids such as HES can be implemented by co-administration of an anti-

inflammatory drug such as NAC. Our results suggest that such an approach could be

used for other fluids, but this approach would require testing in subsequent studies.

Conclusions
In conclusion, the addition of NAC to fluid resuscitation may improve renal oxygenation

and attenuate microvascular dysfunction and AKI. Decreases of renal NO levels and hyalur-

onic acid levels may be involved in this beneficial effect. A therapeutic strategy combining

the macrovascular effects of fluids and the microvascular effects of NAC may be critical to

preventing sepsis-induced AKI. This study sets forth a new concept for changing the pro-

cedure of fluid resuscitation by the addition of antioxidant therapy during the initial phase

of resuscitation.
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