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Abstract

Background: Low hemoglobin concentration (Hb) and low mean arterial blood
pressure (MAP) impact outcomes in critically ill patients. We utilized an experimental
model of “normotensive” vs. “hypotensive” acute hemodilutional anemia to test
whether optimal tissue perfusion is dependent on both Hb and MAP during acute
blood loss and fluid resuscitation, and to assess the value of direct measurements of
the partial pressure of oxygen in tissue (PtO2).

Methods: Twenty-nine anesthetized rats underwent 40% isovolemic hemodilution
(1:1) (or sham-hemodilution control, n = 4) with either hydroxyethyl starch (HES)
(n = 14, normotensive anemia) or saline (n = 11, hypotensive anemia) to reach a
target Hb value near 70 g/L. The partial pressure of oxygen in the brain and skeletal
muscle tissue (PtO2) were measured by phosphorescence quenching of oxygen using
G4 Oxyphor. Mean arterial pressure (MAP), heart rate, temperature, arterial and venous
co-oximetry, blood gases, and lactate were assessed at baseline and for 60 min after
hemodilution. Cardiac output (CO) was measured at baseline and immediately after
hemodilution. Data were analyzed by repeated measures two-way ANOVA.

Results: Following “normotensive” hemodilution with HES, Hb was reduced to 66 ±
6 g/L, CO increased (p < 0.05), and MAP was maintained. These conditions resulted in a
reduction in brain PtO2 (22.1 ± 5.6 mmHg to 17.5 ± 4.4 mmHg, p < 0.05), unchanged
muscle PO2, and an increase in venous oxygen extraction. Following “hypotensive”
hemodilution with saline, Hb was reduced to 79 ± 5 g/L and both CO and MAP were
decreased (P < 0.05). These conditions resulted in a more severe reduction in brain
PtO2 (23.2 ± 8.2 to 10.7 ± 3.6 mmHg (p < 0.05), a reduction in muscle PtO2 (44.5 ± 11.0 to
19.9 ± 12.4 mmHg, p < 0.05), a further increase in venous oxygen extraction, and a
threefold increase in systemic lactate levels (p < 0.05).
(Continued on next page)
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Conclusions: Acute normotensive anemia (HES hemodilution) was associated with a
subtle decrease in brain tissue PtO2 without clear evidence of global tissue hypoperfusion.
By contrast, acute hypotensive anemia (saline hemodilution) resulted in a profound
decrease in both brain and muscle tissue PtO2 and evidence of inadequate global
perfusion (lactic acidosis). These data emphasize the importance of maintaining CO and
MAP to ensure adequacy of vital organ oxygen delivery during acute anemia. Improved
methods of assessing PtO2 may provide an earlier warning signal of vital organ
hypoperfusion.

Keywords: Hemodilution, Anemia, Mean arterial pressure, Cardiac output, Hypotension,
Partial pressure of oxygen in tissue

Background
The optimal care of critically ill patients often involves management of multiple risk

factors for inadequate organ perfusion, including hypotension and anemia. Assessment

of the impact of hypotension and anemia in the perioperative period demonstrates that

both factors are associated with serious adverse outcomes. Interoperative hypotension

has been associated with increased brain [1, 2], heart [3–5], and kidney injury [3, 6, 7]

and mortality [8–10]. These outcomes often depend on the magnitude and duration of

hypotension; for example, a 40% drop in mean arterial pressure (MAP) from baseline

for more than 30 min has been associated with myocardial injury [5]. Perioperative and

acute interoperative anemia have also been associated with similar patterns of adverse

events; including evidence of brain [11, 12], heart [13, 14], and kidney injury [15, 16]

and mortality [14, 16–18]. Experimental models of acute anemia suggest that inadequate

microcirculatory perfusion and tissue hypoxia contribute as a mechanism of vital organ

injury and mortality [19–21].

Additionally, current clinical practice often favors a restrictive fluid therapy and red

blood cell (RBC) transfusion approaches in surgical and critically ill patients. While

many of the completed prospective randomized clinical trials favor the non-inferiority of

a restrictive transfusion threshold near a hemoglobin concentration (Hb) of 70–80 g/L

[22–24], more recent analysis of these data suggest that low Hb levels in the restrictive

arms of these studies may be associated with increased organ injury and mortality in

specific patient populations [25, 26].

We performed an experimental study to measure the partial pressure of oxygen in

tissue (PtO2) in the brain and skeletal muscle, and other parameters of systemic

perfusion, under conditions of acute normotensive vs. hypotensive hemodilutional

anemia to assess the combined impact of acute anemia and hypotension on tissue per-

fusion. We hypothesize that optimal tissue perfusion depends on multiple interactive

physiological parameters, including Hb and blood pressure, during acute blood loss and

fluid resuscitation.

Methods
Overview and preparation

The Animal Care and Use Committee at St. Michael’s hospital approved all animal

protocols. Twenty-nine male Sprague-Dawley rats (Jackson laboratory) with a mean

weight near 500 g were anesthetized with isoflurane 2–3% in 21% oxygen for the
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duration of the experiment. The trachea was intubated and the lungs were mechanic-

ally ventilated using a pressure controlled ventilator, with peak inspiratory pressure be-

tween 15 and 17 cm H2O and a respiratory rate between 60 and 70 breaths per minute

and no additional PEEP, to a target partial pressure of arterial carbon dioxide (PaCO2)

near 40 mmHg (Kent Scientific Corp., Torrington, CT 06790).

The tail artery and vein were cannulated to perform the hemodilution and to monitor

MAP, arterial blood gases, and Hb by co-oximetry. A jugular venous catheter was

inserted in a retrograde manner toward the right atrium to provide measurements of

venous blood gases. Ventilation was monitored by arterial blood gases to maintain

normoxia and normocapnia. Blood pressure, ECG, and body temperature were

measured using a computerized data-acquisition system (PowerLab, ADInstruments

Inc., Colorado Springs CO 80906). Rectal temperature was maintained between 35 and

36 °C using a heating plate. The partial pressure of oxygen in the tissue (brain, skeletal

muscle) or PtO2 was measured using oxygen-dependent quenching of phosphorescence

as previously described [27] utilizing a novel microsensor G4 Oxyphor technology

(PMOD1000 instrument, Oxygen Enterprises, Ltd., Philadelphia, PA 19104–1808).

Hemodilution protocol

After performing all of the procedures, baseline measurements were collected for

10 min. Rats then underwent either “normotensive” hemodilution with 1:1 volume

exchange of 40% estimated total blood volume (30 ml/kg) with either 6% hydroxyethyl

starch (HES) 130/0.4 in 0.9% sodium chloride (Voluven, n = 14, Fresenius Kabi Canada,

Mississauga ON L4W 4Y3), or “hypotensive” hemodilution with 0.9% sodium chloride

(saline, n = 11). During hemodilution, arterial blood was exchanged with HES or saline

at a fixed rate over 10 min, using the push-pull infusion pump (PHD2000, Harvard

Apparatus Canada, St. Laurent, Quebec, H4S 1R9). Following hemodilution, physio-

logic parameters were continuously acquired during a 60-min recovery period. Brain

and hind limb skeletal muscle tissue PtO2 were recorded continuously. Arterial and

venous blood gases and co-oximetry measurements were collected at baseline, immedi-

ately following hemodilution, and at 30 and 60 min following completion of hemodilu-

tion using a heparinized syringe. Samples were analyzed using a blood gas analyzer and

co-oximeter (ABL 800, Radiometer Canada, London ON, N5V 4T7).

An additional four rats were placed in a sham control group and did not undergo

hemodilution, to serve as a time-based negative control group.

Cardiac output measurements

These experiments included four rats per hemodilution group, which underwent

cardiac output (CO) measurements before and after hemodilution. Transthoracic

echocardiography was performed in hemodiluted rats in the supine position at baseline

and within 15 to 30 min following hemodilution utilizing a high-frequency ultrasound

system (Vevo 2100, MS-250 transducer, Visualsonics, Toronto, ON). Two dimensional

long-axis images of the left ventricle in parasternal long- and short-axis views with

M-mode measurements at mid-papillary muscle level and linear dimensions were

analyzed offline (Vevo 2100 software v. 1.3) using the standard leading edge to

leading edge technique. CO was calculated as SV × HR, where SV and HR are
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stroke volume and heart rate, respectively. SV and ejection fraction (EF) were mea-

sured using the Teicholz cubed formula, LV volume = 7 × LVID3/(2.4 + LVID),

followed by the difference between ESV and EDV, where LVID, ESV, and EDV are

left ventricular internal diameter, end systolic volume, and end diastolic volume,

respectively. Fractional shortening (FS%) was calculated as (LVIDd − LVIDs)/

LVIDd × 100, where LVIDd and LVIDs are left ventricular end diastolic and end

systolic internal diameters, respectively. Three consecutive cardiac cycles were

averaged for all analyses.

Statistical analysis

All data are presented as mean ± SD. Data were analyzed by repeated measures

two-way ANOVA and post hoc Tukey test, where appropriate according to Sigmaplot

software (SigmaStat 11.0).

Results
Baseline values were comparable for all parameters measured between the three experi-

mental and control groups. No differences in heart rate (299.0 ± 29.5, 309.7 ± 51.8, 290.5

± 3.2 bpm) or body temperature (36.1 ± 0.5, 36.0 ± 0.4, 35.9 ± 0.3 °C) were observed at

baseline or at any time point for the HES, saline, and sham control groups, respectively.

Arterial and venous blood gases and Hb concentrations are reported in Tables 1 and 2.

Arterial and venous co-oximetry and blood gas analysis

In the normotensive hemodilution (HES) group, mean Hb values decreased from a

baseline of 131 ± 9 to 66 ± 6 g/L immediately following hemodilution (p < 0.001). In the

hypotensive hemodilution saline group, Hb decreased from 130 ± 11 to 79 ± 5 g/L

(Table 1; p < 0.001). The Hb concentration in the saline hemodilution group was

initially higher than in the HES hemodilution group (Table 1). In the sham control rats,

Hb did not decrease over time.

Arterial oxygen tension (PaO2) and Hb saturation remained stable and did not

decrease throughout the experimental protocol in any group (Tables 1 and 2, Fig. 1).

Venous oxygen tension (PvO2) and saturation decreased from baseline after 60 min in

all groups. There was no difference between PvO2 between the sham controls and the

HES hemodilution group. By contrast, there was a more profound decrease in PvO2

and saturation in the saline hemodiluted group (Tables 1 and 2, Fig. 1, p < 0.05).

Following saline hemodilution, the PaO2 was increased transiently at 30 min following

hemodilution. This change was associated with a reduction in PaCO2 (Table 2; p < 0.001),

which is consistent with a respiratory compensation to metabolic acidosis. Animals in this

group developed a lactic acidosis, as indicated by a significant increase in lactate, a reduc-

tion in pH, and HCO3
− (Table 2, Fig. 1, p < 0.001 for all). A maximal rise in arterial lactate

was achieved by 60 min following hemodilution (3.5 ± 1.3 to 10.9 ± 6.2 mmol/L, p < 0.05).

Mean arterial blood pressure measurements

There was a significant treatment, time, and interaction effect (two-way ANOVA;

p < 0.001 for all). MAP was maintained for the duration of the 60-min recovery period

in both the normotensive hemodilution and control group (Fig. 2). By contrast, there was
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Fig. 1 (See legend on next page.)

Kei et al. Intensive Care Medicine Experimental  (2017) 5:12 Page 7 of 15



an immediate decrease in MAP following hemodilution in the saline hemodilution group

(77.3 ± 4.0 vs. 42.8 ± 5.2 mmHg, p < 0.05), which persisted to the 60-min recovery period

(31.1 ± 12.8 mmHg). MAP was significantly lower in the saline hemodilution group,

relative to both controls and starch hemodilution groups at all post-hemodilution time

points (Fig. 2, p < 0.001).

Partial pressure of oxygen in brain and muscle tissue (PtO2)

There was a significant time and interaction effect for brain PtO2 when comparing all

three experimental groups (two-way ANOVA; p < 0.001 for both). Brain PtO2 remained

stable in the time-based control sham hemodiluted group. Following normotensive he-

modilution with HES, brain PtO was reduced from a baseline value of 22.1 ± 5.6 mmHg

to a value of 15.6 ± 6.5 mmHg immediately following hemodilution. The brain PtO2

remained decreased for 60 min reaching a value of 17.5 ± 4.4 mmHg (Fig. 2, p < 0.05).

Rats undergoing hypotensive hemodilution with saline experienced a greater decrease

in brain PtO2 which decreased from baseline (23.2 ± 8.2 mmHg) to values as low as

16.0 ± 4.5 mmHg immediately following hemodilution. The brain PtO2 reached a nadir

value of 10.7 ± 3.6 mmHg after 60 min (Fig. 2, p < 0.05).

There was no time or interaction effect observed for hind limb skeletal muscle PO2

(p = 0.051 and 0.082, respectively). However, there was a significant time-treatment

interaction (two-way ANOVA; p < 0.001). No change in muscle PtO2 was observed fol-

lowing sham procedure or HES hemodilution (Fig. 2). By contrast, muscle PO2 de-

creased significantly from baseline values of 44.5 ± 11.0 mmHg to 30.6 ± 10.6 mmHg

immediately following hemodilution with saline (Fig. 2, p < 0.05). In this group, muscle

PtO2 reached a nadir at 60 min (19.9 ± 12.4 mmHg, p < 0.05).

Cardiac output measurements

CO data from normotensive and hypotensive hemodilution groups are presented in

Table 3. These experiments demonstrate that CO is increased in the normotensive HES

hemodilution group, predominantly due to an increase in diastolic volume and stroke

volume. These changes were not observed in the hypotensive saline hemodilution

group which demonstrated a decrease in CO, SV, and diastolic volume (Table 3).

Discussion
We demonstrated a significant interaction between low Hb concentration and low

MAP with respect to limiting tissue oxygen delivery in brain and muscle, in a model of

normotensive vs. hypotensive hemodilution. During normotensive hemodilution with

HES, blood pressure was maintained, CO increased, and systemic perfusion was

(See figure on previous page.)
Fig. 1 Upper panel Arterial PO2 remained stable except for a transient increase at 30 min (associated with
hyperventilation) in the saline hemodilution group. A significant reduction in venous PO2 was observed in
the saline hemodilution group relative to the controls (*p < 0.001 vs. baseline, #p < 0.05 vs. control). Middle
panel Arterial oxygen saturation remained stable in all groups. A significant reduction in venous PO2 was
observed in all groups relative to baseline. The venous oxygen saturation in the saline hemodilution group
was reduced relative to the controls and HES group (*p < 0.001 vs. baseline, #p < 0.05 vs. control and HES).
Lower panel A significant rise in arterial lactate was only observed in the saline hemodilution group (*p < 0.001
vs. baseline, #p < 0.05 vs. control and HES)
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Fig. 2 (See legend on next page.)
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generally preserved, as indicated by the absence of lactic acidosis and sustained muscle

PtO2. However, under these conditions, brain tissue PtO2 was significantly reduced,

suggesting that tissue oxygen delivery did not meet the higher metabolic requirements

for oxygen in the brain. These data are consistent with our previous studies, which

demonstrate that acute normotensive anemia is associated with brain tissue hypoxia

and activation of hypoxic cellular signaling pathways, including hypoxia inducible

factor (HIF) [20]. This data may help to explain why acute hemodilution and anemia

are associated with increased stroke incidence in patients undergoing cardiac and non-

cardiac surgery [11, 12]. In addition, acute anemic conditions which produce mild brain

tissue hypoxia have been associated with evidence of more severe renal tissue hypoxia

[21, 28]; providing a plausible explanation for both stroke acute kidney injury (AKI) in

patient exposed to hemodilutional anemia [12, 16]. The combined effect of inadequate

perfusion to vital organs during acute anemia may contribute to the observed associ-

ation of increased mortality in anemic perioperative patients [16, 17].

By contrast, hemodilution with saline resulted in hypotension, a reduction in CO, a

further reduction in brain PtO2, a newly observed reduction in muscle PtO2, and a

(See figure on previous page.)
Fig. 2 Upper panel Mean arterial pressure remained stable in controls and after hemodilution with
hydroxyethyl starch (HES) but decreased significantly, relative to controls and HES hemodilution groups,
following hemodilution with saline (*p < 0.001 vs. baseline, #p < 0.05 vs. control and HES). Middle panel Brain
PO2 decreased from baseline following hemodilution with both HES and saline (*p < 0.001 vs. baseline).
Lower panel Skeletal muscle PO2 remained stable in control and HES hemodilution groups but was reduced
relative to baseline and controls after saline hemodilution (*p < 0.001 vs. baseline, #p < 0.05 vs. control
and HES)

Table 3 ECHO measures following hemodilution

Baseline Post-hemodilution

MAP (mmHg) HES 82.2 ± 19.6 74.3 ± 19.7

Saline 103.6 ± 12.6 60.0 ± 5*

Hb (g/L) HES 144 ± 6 77 ± 7*

Saline 136 ± 3 88 ± 10*#

CO (mL/min) HES 57.7 ± 8.7 116.8 ± 15.6*

Saline 72.8 ± 22.4 41.1 ± 14.0*#

HR (bpm) HES 323.6 ± 46.1 382.0 ± 29.0

Saline 362.9 ± 22.7 333.0 ± 23.0

SV (μL) HES 179.9 ± 26.9 305.7 ± 32.2*

Saline 199.1 ± 55.5 122.1 ± 33.8*#

Diastole volume (μL) HES 217.5 ± 45.1 331.8 ± 30.8*

Saline 263.5 ± 70.2 149.8 ± 33.1*#

Systole volume (μL) HES 37.6 ± 21.9 26.1 ± 12.1

Saline 64.4 ± 16.6 27.7 ± 11.2

EF (%) HES 83.5 ± 6.6 92.1 ± 3.6

Saline 75.3 ± 2.8 81.1 ± 8.7

FS (%) HES 54.2 ± 7.4 66.8 ± 6.6

Saline 45.4 ± 2.8 51.1 ± 8.7

*p < 0.01 vs. baseline, #p < 0.05 vs HES; two-way ANOVA repeated measures
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severe increase in lactate suggestive of profound systemic ischemia. These data demon-

strate the additive impact of combined low Hb in the face of a low CO and low MAP

on tissue oxygen delivery in an experimental model. The mechanism likely involves

inadequate fluid resuscitation with reduced intravascular volume and an inadequate

cardiovascular response to anemia as indicated by the CO and diastolic volume

analysis. From prior studies, we understand that during acute anemia, oxygen homeostasis

is maintained by an active increase in CO to ensure perfusion of vital organs including

the brain [19, 20]. Inhibition of the CO response results in accentuation of tissue hypoxia

[19]. We observed a similar effect in the saline hemodilution group where an inadequate

CO response to anemia resulted in profound tissue hypoxia further demonstrating the

need to preserve adequate intravascular fluid volume during anemia.

Can measurement of tissue PO2 inform clinical practice to improve outcomes?

Clinical monitoring of the partial pressure of oxygen in brain tissue has been performed

directly using invasive tissue probes in patients exposed to neurotrauma; however, the in-

vasive nature of these probes severely limits their use clinically. Indirect assessment of

brain PtO2 has been achieved utilizing near infrared spectroscopy (NIRS). NIRS measures

changes in arterial and venous oxy- and deoxyhemoglobin levels which indirectly reflect

levels of microvascular oxygenation. NIRS is capable of detecting cerebral microvascular

oxygen desaturation in patients undergoing heart surgery [6, 29–31]. Treatment algo-

rithms have been defined to respond to, and correct, episodes of cerebral desaturation

[29, 31]. While these maneuvers are able to correct the observed cerebral desaturations,

only one study has demonstrated improvement in patient outcome [31].

Other novel light-based methods for directly measuring cellular energetics and tissue

PO2 are being developed. Spectroscopic approaches, including broadband spectroscopy,

allowed for measurement of the oxidative state of cellular cytochromes which reflect

cellular energetics [32, 33]. Measurement of cutaneous mitochondrial PO2, utilizing the

oxygen-dependent delayed fluorescence of protopor-phyrin IX in the skin [34, 35], has

been used to assess the mitochondrial PO2 response to acute hemodilution in an ex-

perimental pig model [35]. This approach was able to detect tissue hypoxia at an earlier

stage of hemodilution relative to more traditional measurements including changes in

MAP, serum lactate, VO2, and NIRS [35]. Future studies will be required to assess the

impact of these technologies on patient outcomes.

In clinical studies, both hypotension [1–10] and anemia [11–18] have been indepen-

dently associated with increase acute renal injury [3, 6, 7, 15, 16], myocardial infarction

[3–5, 13, 14], stroke [1, 2, 11, 12], and mortality [8–10, 14, 16–18]. However, few of these

retrospective analyses have formally assessed the combined impact of low Hb and low

MAP on patient outcome. A 2012 post hoc analysis by Haase et al. demonstrated a 3.36

(1.34–8.41)-fold increase in cardiac surgery risk of AKI associated with a combination of

anemia and hypotension during CPB relative to anemia alone [36]. However, a retrospect-

ive study by Sickeler et al. in 2014, which intended to replicate Haase’s findings, involved

a much larger cohort of 3963 patients and did not find any association between the co-

occurrence of hypotension and anemia in cardiac surgery-related AKI risk [37]. Further

clinical research is needed to fully assess the potential interaction between anemia and

hypotension and their combined impact on patient outcome.
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Optimal choice of resuscitation fluid in critical care

Data to support the choice of optimal fluid for resuscitation (blood, colloid, crystalloid,

blood substitute) in specific critical care settings is lacking [38]. While a complete review

is beyond the scope of this manuscript, our data support some interesting observations

about fluid restriction and the potential value of monitoring tissue PtO2 to assess fluid

replacement and transfusion strategies. Recent assessment of clinical practice favors

goal-directed and/or restrictive fluid management strategies [39]. In addition, review of

management strategies in critical care demonstrate a preference toward crystalloid as the

first choice for fluid therapy [40] and an overall increase in vasopressor use [41]. This

combination of treatment strategies may lead to an increased risk of patients with reduced

intravascular volume and support the priority of increased utilization of monitors which

assess the adequacy of microvascular perfusion of vital organs [42].

Data from prospective randomized trials assessing restrictive vs. liberal RBC transfusion

thresholds have largely favored a restrictive approach [43]. More recent analysis suggest

that some patient populations may be harmed by this restrictive approach including

patients undergoing cardiac surgery [44, 45] or those experiencing acute myocardial

ischemia [25]. Data from the TITRe2 trial demonstrated that patients randomized to a

restrictive transfusion threshold (Hb <7.5 g/dL) experienced a higher mortality [(4.2 vs.

2.6%; HR 1.64 (1.00 to 2.679)], relative to patients randomized to a liberal threshold [44].

Early data from the TRICS trial in cardiac surgery also demonstrated a trend to increased

adverse events including stroke (3 vs. 0) and death (4 vs. 1) in the restrictive study arm

[46]. Utilization of methods to directly assess tissue oxygen delivery may help to define

appropriate patient-specific fluid therapy and RBC transfusion thresholds in different

patient populations. Finally, direct measurement of tissue oxygen delivery may promote

the development of novel blood substitutes, including hemoglobin-based oxygen carriers

(HBOCs). In experimental models, HBOCs have been demonstrated to maintain oxygen

delivery to tissue during severe degrees of volume exchange [47]. However, due to con-

cerns about toxicity and adverse clinical outcomes associated with HBOC use [48], future

development of HBOCs will require measures of both efficacy (PtO2) and safety.

There are several limitations to the current study. We did not provide a whole blood

exchange control, as these controls had been performed previously without any effect

on tissue oxygen measurements relative to time-based controls [49]. We did not

directly assess changes in intravascular volume. Further, although crystalloids and col-

loids are used clinically, they are typically not used comparably in a direct 1:1 blood

volume exchange. Thus, our saline hemodilution group likely resulted in additional

hemodynamic stress, including reduced intravascular volume that is not reflective of

clinical care.

Conclusions
In this study, we observed that hypotensive anemia (1:1 saline/blood fluid exchange)

resulted in global ischemia and severe tissue hypoxia. By contrast, normotensive anemia

(1:1 HES/blood fluid exchange) preserved global organ perfusion but was unable to

prevent a subtle reduction in brain tissue PtO2. These data support the ongoing assess-

ment of clinically applicable technologies to assess and measure tissue PtO2, in order to

develop strategies maintaining tissue oxygen delivery and limiting adverse events

associated with tissue hypoxia in patients with critical illness.
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