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Abstract

Background: In prolonged non-obese critically ill patients, preservation of adipose
tissue is prioritized over that of the skeletal muscle and coincides with increased
adipogenesis. However, we recently demonstrated that in obese critically ill mice, this
priority was switched. In the obese, the use of abundantly available adipose tissue-derived
energy substrates was preferred and counteracted muscle wasting. These observations
suggest that different processes are ongoing in adipose tissue of lean vs. overweight/
obese critically ill patients.

Methods: We hypothesize that to preserve adipose tissue mass during critical illness,
adipogenesis is increased in prolonged lean critically ill patients, but not in overweight/
obese critically ill patients, who enter the ICU with excess adipose tissue. To test this, we
studied markers of adipogenesis in subcutaneous and visceral biopsies of matched lean
(n= 24) and overweight/obese (n = 24) prolonged critically ill patients. Secondly, to further
unravel the underlying mechanism of critical illness-induced adipogenesis, local
production of eicosanoid PPARγ agonists was explored, as well as the adipogenic
potential of serum from matched lean (n = 20) and overweight/obese (n = 20)
critically ill patients.

Results: The number of small adipocytes, PPARγ protein, and CEBPB expression were
equally upregulated (p≤ 0.05) in subcutaneous and visceral adipose tissue biopsies of lean
and overweight/obese prolonged critically ill patients. Gene expression of key enzymes
involved in eicosanoid production was reduced (COX1, HPGDS, LPGDS, ALOX15, all p≤ 0.05)
or unaltered (COX2, ALOX5) during critical illness, irrespective of obesity. Gene expression of
PLA2G2A and ALOX15B was upregulated in lean and overweight/obese patients (p≤ 0.05),
whereas their end products, the PPARγ-activating metabolites 15s-HETE and 9-HODE,
were not increased in the adipose tissue. In vitro, serum of lean and overweight/obese
prolonged critically ill patients equally stimulated adipocyte proliferation (p≤ 0.05) and
differentiation (lipid accumulation, DLK1, and CEBPB expression, p≤ 0.05).

Conclusions: Contrary to what was hypothesized, adipogenesis increased independently
of initial BMI in prolonged critically ill patients. Not the production of local eicosanoid
PPARγ agonists but circulating adipogenic factors seem to be involved in critical illness-
induced adipogenesis. Importantly, our findings suggest that abundantly available energy
substrates from the adipose tissue, rather than excess adipocytes, can play a beneficial
role during critical illness.
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Background
Critical illness induces a hypercatabolic response with severe wasting of lean tissue [1, 2].

Remarkably, in non-obese patients, critical illness prioritizes the maintenance of adipose tis-

sue over skeletal muscle tissue [3]. Such preservation of adipose tissue mass during pro-

longed critical illness coincided with increased adipogenesis, as has been observed in

subcutaneous and visceral adipose tissue biopsies of prolonged critically ill patients [4, 5].

Recently, we have shown in an animal and patient study that premorbid obesity protected

against muscle wasting and weakness. Obese critically ill mice lost relatively more adipose tis-

sue mass than lean mice but ultimately retained more adipose tissue [6]. These observations

suggest that in overweight/obese critically ill patients, preservation of the adipose tissue is

not prioritized but that the stored lipids in the adipose tissue are being used, which provokes

a muscle-sparing effect [6]. Overall, these findings indicate an essential role for the adipose

tissue during critical illness but also suggest that different processes are ongoing in lean vs.

overweight/obese critically ill patients. As it appears that having abundantly available adipose

tissue is beneficial during critical illness, an increase in adipogenesis could be interpreted as

an attempt to ensure sufficient adipose tissue during critical illness. However, as the muscle-

sparing effect coincided with a decrease in adipose tissue mass, one could also interpret an

increase in adipogenesis as an undesirable preservation of adipose tissue over the skeletal

muscle. We therefore hypothesize that, to preserve adipose tissue mass during critical illness,

adipogenesis is increased in prolonged lean critically ill patients, but not in overweight/obese

critically ill patients, who enter the intensive care unit (ICU) with excess adipose tissue.

It is currently unclear how adipogenesis is upregulated during critical illness. It was

demonstrated that the nuclear receptor peroxisome proliferator-activated receptor

gamma (PPARγ), the key regulator of adipogenesis, was upregulated in adipose tissue

biopsies of prolonged critically ill patients and rodents [5, 7]. Of note, adipogenesis

coincided with an increased accumulation of alternatively activated M2 macrophages

[5, 7]. These anti-inflammatory M2 macrophages are implicated in immunity, inflam-

mation, allergy, parasitic infections, wound healing, metabolic functions, and malig-

nancy [8]. Although mechanisms regulating adipose tissue plasticity during health or

disease are still poorly understood [9], alternatively activated M2 macrophages have

been shown to produce endogenous fatty acid-derived PPARγ ligands, thereby provid-

ing local adipogenic signals and stimulating adipogenesis [10].

The first aim of this study was to investigate whether adipogenesis is differentially increased

in lean and overweight/obese prolonged critically ill patients. To test this, we studied markers

of adipogenesis in subcutaneous and visceral adipose tissue biopsies of lean and overweight/

obese critically ill patients that were matched for demographics and for type and severity of

illness. Secondly, to further unravel the underlying mechanism of critical illness-induced

adipogenesis, the local production of eicosanoid PPARγ agonists was explored. Additionally,

in an in vitro study, we investigated the adipogenic potential of serum from matched lean

and overweight/obese prolonged critically ill patients.

Methods
Collection of human adipose tissue biopsies

The study protocol of the human studies had been approved by the Institutional Review

Board of the KU Leuven (ML1820, ML2707, ML1094). Written informed consent was
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obtained from the patients’ closest family member and from healthy volunteers. ICU patients

whose biopsies were collected had been included in two randomized controlled trials on the

effect of intensive vs. conventional insulin therapy in the medical and surgical ICU [11, 12].

Subcutaneous adipose tissue and visceral adipose tissue biopsies from prolonged critically ill

patients were harvested immediately postmortem, within minutes after death. From 85 avail-

able biopsies, we selected 24 lean patients (body mass index (BMI) ≤25 kg/m2) and 24 over-

weight/obese patients (BMI >25 kg/m2) who were propensity score matched on gender, age,

malignancy, diabetes, APACHE II score on admission, and randomization to intensive or

conventional insulin therapy (Table 1). For each patient, BMI was calculated based on height

and weight data available in the patient file. As healthy references, subcutaneous adipose tis-

sue and visceral adipose tissue biopsies (n = 20) were available from non-critically ill individ-

uals with similar demographics (Table 1). Subcutaneous and visceral adipose tissue biopsies

were taken intraoperatively from patients who were not critically ill and underwent elective

surgery for restorative rectal resection. Biopsies were used for RNA analyses, protein analyses,

and histological analyses.

Cell culture study

Serum samples were collected from prolonged critically ill patients (median ICU stay at

day of serum sampling was 11 days) and healthy volunteers after informed consent. The

study protocol had been approved by the Institutional Review Board of the KU Leuven

(ML8850). Human adipose-derived stem cells (hADSCs; Invitrogen, Ghent, Belgium) were

seeded on glass coverslips (Menzel-Gläzer, Braunschweig, Germany) coated with 5% gel-

atin (Sigma-Aldrich, Saint Louis, MI, USA) in Roswell Park Memorial Institute (RPMI)-

1640 medium (Invitrogen) containing 10% fetal bovine serum (FBS, Invitrogen) and 1%

Antibiotic-Antimycotic (A/A, Invitrogen). Cells were kept in a humidified incubator at

37 °C and 5% CO2. After 24 h, the medium was replaced with RPMI-1640 containing 1%

A/A and 10% human serum from established serum pools. Serum pools were composed

of serum from either healthy controls (n = 47), lean prolonged critically ill patients (BMI

≤25 kg/m2, n = 20), or overweight/obese prolonged critically ill patients (BMI >25 kg/m2,

n = 20). Patients and healthy volunteers were matched for age and gender. Additionally,

patients were also matched for severity of illness (Table 2). After 1, 2, 3, and 4 days, cells

were fixed in 6% paraformaldehyde for histological staining and messenger RNA was iso-

lated. All serum conditions were performed in triplicate.

Gene expression and protein expression analyses

Messenger RNA was isolated, reverse transcribed, and analyzed in real time with the

StepOne Plus (Applied Biosystems, Carlsbad, CA, USA) and run in duplicate. The

comparative Ct method was used to analyze data. Data are expressed normalized to ei-

ther RNA, 18S ribosomal 5 (RNA18S5) or glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) gene expression and as a fold change of the mean of the controls. Gene ex-

pression assays from Applied Biosystems were used to detect expression levels of

RNA18S5, GAPDH, CCAAT/enhancer-binding protein beta (CEBPB), delta-like 1

homolog (DLK1), cyclooxygenase 1 (COX1), cyclooxygenase 2 (COX2), prostaglandin

D2 synthase (LPGDS), hematopoietic prostaglandin D synthase (HPGDS), phospholip-

ase A2 group IIA (PLA2G2A), arachidonate 5-lipoxygenase (ALOX5), arachidonate 15-
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lipoxygenase (ALOX15), and arachidonate 15-lipoxygenase type B (ALOX15B). PPARγ

protein levels were quantified by Western blot as described previously [5]. Data are

expressed relative to the means of the controls.

15-Hydroxyeicosatetraenoic acid (15s-HETE) and 9-hydroxyoctadecadienoic acid

(9-HODE) concentrations were quantified in human subcutaneous and visceral adipose

tissue biopsies. Lipids were extracted in methyl formate (Sigma-Aldrich) from an equal

amount of protein using C18 reverse phase columns (Bond Elut C18, Agilent

Technologies, Santa Clara, CA, USA). Lipid extracts were evaporated under a stream

of nitrogen and reconstituted in assay buffer before 15s-HETE and 9s-HODE determin-

ation by enzyme-linked immunosorbent assays (ELISAs; 15(S)-HETE ELISA Kit, Enzo

Life Sciences, Farmingdale, NY, USA; 9(+)-HODE EIA Kit, Oxford Biomedical

Research, Rochester Hills, MI, USA).

Table 1 Baseline and outcome characteristics of matched critically ill patients of whom
postmortem subcutaneous and visceral adipose tissue biopsies were studied

Lean critically
ill (N = 24)

Overweight/obese
critically ill (N = 24)

p valued Healthy reference
(N = 20)

p valuee

Baseline characteristics

Gender (n, % male) 17 (71) 14 (58) 0.5 14 (70) 0.7

Age, years (mean ± SEM) 68.4 ± 2.8 68.8 ± 2.8 0.5 70 ± 2.6 0.6

BMI, kg/m2 (mean ± SEM) 22.5 ± 0.4 27.7 ± 0.3 <0.0001 24.9 ± 2.6 0.8

Diabetes mellitus (n, %) 4 (17) 3 (12) 1 3 (15) 1

Malignancy (n, %) 9 (37) 9 (37) 0.2

APACHE II score (mean ± SEM) 25 ± 2 26 ± 2 0.5

Diagnostic admission category (n) 0.3

Cardiac surgery 1 1

Complicated surgerya 1 5

Multiple trauma or burns 0 1

Hematologic or oncologic 4 5

Respiratory 12 7

Other disease exacerbationsb 4 4

Other sepsis 2 1

Randomization to intensive insulin
therapy (n, %)

10 (42) 11 (46) 1

Received steroid therapy (n, %) 17 (73) 18 (85) 0.4

Outcome

ICU stay (median (IQR))c 10 (7-20) 10 (6-17) 0.2

Cause of death (n) 0.5

Cardiac/hypovolemic shock 4 4

Multiple organ failure 8 12

Respiratory failure 8 7

Septic shock/therapy resistance 3 1

Severe brain damage 1 0

SEM standard error of the mean, BMI body mass index, IQR interquartile range, ICU intensive care unit
aComplicated surgery indicates patients suffering from complications after abdominal or pelvic surgery, pulmonary or
esophageal surgery, or vascular surgery
bCardiovascular disease, gastroenterologic or hepatic disease, neurologic disease
cPostmortem biopsies were collected minutes after death in the ICU. ICU stay thus reflects day of biopsy
dComparison between lean and overweight/obese critically ill patients
eComparison between critically ill patients and healthy references
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Histological staining and analyses

Subcutaneous and visceral adipose tissue was fixed in 4% paraformaldehyde and em-

bedded in paraffin. Sections of 5 μm were stained with hematoxylin and eosin. Adipo-

cyte cell size was measured on digital microscopy images using Adobe Photoshop CS2

(Adobe Systems, San Jose, CA, USA) and Image Processing Tool Kit (Reindeer Graph-

ics, Asheville, NC, USA) as described previously [4]. Fixed hADSCs were stained with

Oil Red O and counterstained with hematoxylin. Visualization of the cells was per-

formed with a Zeiss AxioVert 200M microscope (Carl Zeiss, Oberkochen, Germany)

equipped with an AxioCam MRC5 camera. MosaiX pictures were taken at ×5 optical

zoom using Axiovision Rel 4.8 software (Carl Zeiss). Cell counting and quantification

of the Oil Red O staining were performed using ImageJ software (National Institutes of

Health, Bethesda, MD, USA).

Statistics

Data are presented as box plots with median, interquartile ranges, and 10th and 90th

percentiles or as bars or graphs with whiskers, representing means, and standard error

of the mean (SEM). Normally distributed data were analyzed with factorial one-way

analysis of variance (ANOVA) with post hoc Fisher’s LSD test for multiple compari-

sons. Not-normally distributed data were analyzed with parametric tests after log or

(double) square root transformation if this resulted in a normal distribution; otherwise,

non-parametric Mann-Whitney U test were used. Comparison of matched patients and

healthy references was performed with Student’s t tests and Fisher’s exact tests for pro-

portions. Analyses were performed using JMP 8.0.1 (SAS Institute, Tervuren, Belgium)

Table 2 Baseline and outcome characteristics of matched critically ill patients of whom serum
samples were used in the in vitro study

Lean critically
ill (N = 20)

Overweight/obese
critically ill (N = 20)

p valuec Healthy reference
(N = 47)

p valued

Baseline characteristics

Gender (n, % male) 13 (65) 12 (60) 0.9 30 (64) 1

BMI, kg/m2 (mean ± SEM) 22.4 ± 0.4 29.3 ± 0.9 <0.0001 24.8 ± 3.6 0.2

Age, years (mean ± SEM) 57.2 ± 3.8 56.9 ± 3.4 0.4 58 ± 2.4 0.7

APACHE II score (mean ± SEM) 18.6 ± 6 19.3 ± 6.3 0.6

Diagnostic admission category (n) 2 3 0.6

Cardiac surgery 2 1

Complicated surgerya 3 5

Multiple trauma or burns 3 3

Hematologic or oncologic 4 1

Respiratory 4 6

Other disease exacerbationsb 2 1

Other sepsis

Received steroid therapy (n, %) 0 (0) 0 (0) 1

SEM standard error of the mean, BMI body mass index
aComplicated surgery indicates patients suffering from complications after abdominal or pelvic surgery, pulmonary or
esophageal surgery, or vascular surgery
bCardiovascular disease, gastroenterologic or hepatic disease, neurologic disease
cComparison between lean and overweight/obese critically ill patients
dComparison between critically ill patients and healthy references
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or SPSS 22 (IBM, Brussels, Belgium). Two-sided p values ≤0.05 were considered statis-

tically significant.

Results
Markers of adipogenesis in subcutaneous and visceral adipose tissue biopsies

Compared to the subcutaneous adipose tissue of healthy controls, that of both lean and

overweight/obese critically ill patients showed a lower median adipocyte size, indicative

of an increased amount of small adipocytes (Fig. 1a). Furthermore, lean patients dis-

played a lower adipocyte size than overweight/obese patients. Corresponding with the

increase in small adipocytes, PPARγ protein concentration was significantly increased

in both lean and overweight/obese patients (Fig. 1b). Also, subcutaneous adipose tissue

gene expression of adipogenesis-driver CEBPB was elevated in lean and in overweight/

obese patients (Fig. 1c). Pre-adipocyte marker DLK1 was not different between groups

(p = 0.7, data not shown).

The visceral fat depot of both lean and overweight/obese patients showed an in-

creased amount of small adipocytes compared to non-critically ill individuals (Fig. 1d).

Also, in the visceral adipose tissue, PPARγ protein concentration was elevated in both

lean and overweight/obese patients compared to controls (Fig. 1e). Visceral adipose tis-

sue CEBPB gene expression (p = 0.1, Fig. 1f ) and DLK1 gene expression (p = 0.9, data

not shown) were not different between groups.

Patients on intensive insulin therapy or on steroid treatment did display similar re-

sults as the conventional or non-treated patients (data not shown), except for the

PPARγ protein content in the visceral adipose tissue, which was higher in patients on

steroid therapy (p = 0.01 compared to patients not on steroid therapy).

Local production of eicosanoid PPARγ ligands

The first step in the production of fatty acid-derived endogenous PPARγ ligands is the

mobilization of their precursors arachidonic acid or linoleic acid from phospholipids by

phospholipase A2 (PLA2). Gene expression of the major PLA2 subtype PLA2G2A was

increased in subcutaneous and visceral adipose tissue biopsies of both lean and over-

weight/obese critically ill patients (Fig. 2a, b). Next, for the production of known

PPARγ agonist 15-deoxy-Δ-12,14-prostaglandin J2 (15dPGJ2) [13], arachidonic acid

first has to be converted to prostaglandin H2 by cyclooxygenases (COX1 and COX2),

followed by synthesis of prostaglandin D2 and subsequent conversion to 15dPGJ2.

However, in subcutaneous and visceral adipose tissue biopsies of lean and overweight/

obese critically ill patients, gene expression of COX1 was reduced (Fig. 2c, d) and

COX2 was unaltered (data not shown). Also, the gene expression of the prostaglandin

D2 synthases LPGDS and HPGDS were reduced in subcutaneous and visceral adipose

tissue biopsies of lean and overweight/obese critically ill patients (Fig. 2e–h), arguing

against an upregulated production of PPARγ-stimulating prostaglandins.

Certain lipoxygenase metabolites of arachidonic acid and linoleic acid have also been

identified as endogenously produced PPARγ ligands [13]. Within these pathways, gene

expression of the key enzyme ALOX5 was not altered (Fig. 3a, b) and gene expression

of the ALOX15 enzyme was significantly decreased in both subcutaneous and visceral

adipose tissue biopsies of lean and overweight/obese critically ill patients (Fig. 3c, d). In
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contrast, gene expression of the ALOX15B enzyme was highly elevated in subcutaneous

and visceral adipose tissue of both lean and overweight/obese critically ill patients

(Fig. 3e, f ). Therefore, we measured adipose tissue concentrations of ALOX5 and

ALOX15B end products with PPARγ agonistic activity: the metabolites 15s-HETE and

9-HODE [13]. In subcutaneous adipose tissue, 15s-HETE concentration was compar-

able in all tested groups (Fig. 4a). However, lean critically ill patients had higher 9-

Fig. 1 Markers of adipogenesis in lean and overweight/obese prolonged critically ill patients. Median adipocyte
size in subcutaneous (a) and visceral (d) adipose tissue. Relative PPARγ protein level in subcutaneous (b) and
visceral (e) adipose tissue, as detected with Western blot. Relative mRNA expression of CEBPB in subcutaneous (c)
and visceral (f) adipose tissue. Protein levels are presented as fold change of the mean of healthy controls. Gene
expression data are expressed normalized to RNA18S5 or GAPDH and as a fold change of the mean of the healthy
controls. Light gray bar median and interquartile ranges of healthy controls (n= 20), white lean prolonged critically
ill patients (BMI ≤25 kg/m2; n= 24), dark gray overweight/obese prolonged critically ill patients (BMI >25 kg/m2; n
= 24) [*p≤ 0.05 compared to healthy controls, +p= 0.08 compared to healthy controls]
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Enzymes involved in prostaglandin PPARγ agonist production in lean and overweight/obese prolonged
critically ill patients. Relative mRNA expression of PLA2G2A in subcutaneous (a) and visceral (b) adipose tissue.
Relative mRNA expression of COX1 in subcutaneous (c) and visceral (d) adipose tissue. Relative mRNA expression of
HPGDS in subcutaneous (e) and visceral (f) adipose tissue. Relative mRNA expression of LPGDS in subcutaneous (g)
and visceral (h) adipose tissue. Gene expression data are expressed normalized to RNA18S5 or GAPDH and as a fold
change of the mean of the healthy controls. Light gray bar median and interquartile ranges of healthy controls (n=
20), white lean prolonged critically ill patients (BMI ≤25 kg/m2; n= 24), dark gray overweight/obese prolonged
critically ill patients (BMI >25 kg/m2; n= 24) [*p≤ 0.05 compared to healthy controls]

Fig. 3 Enzymes involved in lipoxygenase PPARγ agonist production in lean and overweight/obese prolonged
critically ill patients. Relative mRNA expression of ALOX5 in subcutaneous (a) and visceral (b) adipose tissue. Relative
mRNA expression of ALOX15 in subcutaneous (c) and visceral (d) adipose tissue. Relative mRNA expression of
ALOX15B in subcutaneous (e) and visceral (f) adipose tissue. Gene expression data are expressed normalized to
RNA18S5 or GAPDH and as a fold change of the mean of the healthy controls. Light gray barmedian and interquartile
ranges of healthy controls (n=20), white lean prolonged critically ill patients (BMI ≤25 kg/m2; n=24), dark gray
overweight/obese prolonged critically ill patients (BMI >25 kg/m2; n=24) [*p≤ 0.05 compared to healthy controls]
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HODE levels than both overweight/obese patients and controls (Fig. 4b). Although the

concentration of 15s-HETE was overall much higher in visceral adipose tissue than in

subcutaneous adipose tissue, it was reduced in both lean and overweight/obese critic-

ally ill patients compared to controls (Fig. 4c). The visceral adipose tissue 9-HODE

concentration was not different between groups (Fig. 4d).

None of the measured parameters were differently affected in patients on intensive

insulin therapy or on steroid treatment as compared to the conventional or non-

treated patients (data not shown).

In vitro study: adipogenic potential of serum of lean and overweight/obese critically ill

patients

As an alternative to locally produced PPARγ ligands, we also investigated whether more

upstream signals circulating in the serum of critically ill patients might increase adipo-

genesis. In an in vitro setup, we therefore studied the adipogenic potential of serum

from lean and overweight/obese critically ill patients. Supplementing commercially

available hADSCs with serum from either healthy controls or critically ill patients

Fig. 4 PPARγ ligands in the adipose tissue of lean and overweight/obese prolonged critically ill patients. 15s-HETE
concentration in subcutaneous (a) and visceral (c) adipose tissue. 9-HODE concentration in subcutaneous (b) and
visceral (d) adipose tissue. Light gray bar median and interquartile ranges of healthy controls (n= 20), white lean
prolonged critically ill patients (BMI ≤25 kg/m2; n= 24), dark gray overweight/obese prolonged critically ill patients
(BMI >25 kg/m2; n= 24) [*p≤ 0.05 compared to healthy controls]
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resulted in increased proliferation over time (Fig. 5a). After 3 days, proliferation tended

to be higher in patient conditions compared to healthy conditions. On day 4, more cells

were observed in patient than in healthy conditions. However, proliferation was not dif-

ferent between conditions with serum from lean or overweight/obese patients (Fig. 5a).

Differentiation to mature adipocytes, measured by cellular lipid accumulation,

occurred significantly more in patient compared to control conditions on all tested days

(Fig. 5b), but similarly in cells supplemented with either lean or overweight/obese pa-

tient serum (Fig. 5b). Also, gene expression of pre-adipocyte marker DLK1 and

adipogenesis-driver CEBPB decreased over time in all conditions (Fig. 5c, d). On day 1,

this decrease was more pronounced in the lean conditions, after which comparable

expression levels were observed in all groups (Fig. 5c, d).

Discussion
In contrast to our hypothesis, markers of adipogenesis were evenly upregulated in the

adipose tissue of lean and overweight/obese prolonged critically ill patients. Further-

more, increased levels of the key adipogenic regulator PPARγ appeared not to be ex-

plained by locally produced endogenous eicosanoid agonists. On the other hand, serum

from critically ill patients had a clear adipogenic potential, as not only proliferation but

Fig. 5 Adipogenic potential of patient serum of lean and overweight/obese prolonged critically ill patients. hADSCs
were supplemented with serum from either healthy volunteers (n= 47), lean prolonged critically ill patients (BMI
≤25 kg/m2, n= 20), or overweight/obese prolonged critically ill patients (BMI ≤25 kg/m2, n= 20). a Proliferation
presented as the number of cells per square millimeter. b Oil Red O staining presented as the number of stained
pixels per cells, expressed as a fold of the mean of the healthy conditions per day. c Relative mRNA expression of
CEBPB. d Relative mRNA expression of DLK1. Gene expression data are expressed normalized to GAPDH and as a fold
change of the mean of the day 0 condition. Light gray bar or light gray line mean of conditions with serum from
healthy controls, white bar or black line serum from lean patients, dark gray bar or dotted black line serum from
overweight/obese patients [*p≤ 0.05 compared to healthy condition, §p≤ 0.05 compared to previous day, +p= 0.09
compared to healthy condition, xp≤ 0.05 between lean and overweight/obese conditions, £p≤ 0.05 between lean
and healthy conditions]
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especially differentiation of adipose tissue stem cells to mature adipocytes was stimu-

lated in the presence of serum from both lean and overweight/obese prolonged critic-

ally ill patients.

We found an increased formation of new, small adipocytes and a clearly upregulated

PPARγ expression in subcutaneous and visceral adipose tissue of both lean and of over-

weight/obese critically ill patients. Overall, lean and overweight/obese prolonged critic-

ally patients showed similar signs of adipogenesis. Therefore, the earlier observed

difference in muscle wasting between lean and overweight/obese prolonged critically ill

patients and rodents [6] is most likely not associated with an altered adipogenic re-

sponse. The current observation of an increased amount of small adipocytes in both

lean and overweight/obese prolonged critically ill patients might suggest that rather

than having excess adipocytes, it is the excess energy that is available in the adipose

tissue of overweight/obese patients which might play a beneficial role in preventing

critical illness-induced muscle wasting. This is in concordance with the previously ob-

served skeletal muscle protection in obese critically ill mice who displayed an increased

loss of adipose tissue mass [6].

PPARγ not only is the master regulator of adipogenesis but also plays an important

anti-inflammatory role in macrophages [13, 14]. Despite the abundant in vitro docu-

mentation that specific fatty acid metabolites are potent PPARγ ligands, only recently

physiologically relevant endogenous PPARγ ligands have been identified. Cell-specific

increased expression of metabolizing enzymes can lead to the production of specific

prostaglandins and lipoxygenase metabolites [10, 15–17]. Especially hematopoietic cells

are thought to be the local producers of these endogenous PPARγ ligands [13, 17]. We

previously documented an increased accumulation of alternatively activated M2

macrophages in adipose tissue of critically ill patients [5, 7]. Activation of PPARγ by

fatty acids could drive this macrophage M2 polarization during critical illness [18].

Such alternatively activated M2 macrophages are able to produce endogenous fatty

acid-derived eicosanoid PPARγ ligands that can stimulate adipogenesis [10]. Further-

more, in response to inflammatory stimuli such as zymosan peritonitis or carrageenan-

induced pleuritis, the endogenous hematopoietic levels of the prostaglandin 15dPGJ2

have been shown to increase in vivo [16, 19]. Cytokines such as interleukin (IL)-4 can

stimulate the production of the endogenous PPARγ ligands 13-HODE, 9-HODE, and

15s-HETE through upregulation of specific lipoxygenases [13, 17, 20]. However, again

in contrast to what we expected, gene expression of the enzymes involved in the

production of 15dPGJ2 were decreased rather than increased in adipose tissue biopsies

of prolonged critically ill patients. Also, ALOX15, involved in the production of 13-

HODE, was downregulated. Although ALOX15B was strongly increased, its end prod-

uct 15s-HETE was not elevated in subcutaneous adipose tissue and even decreased in

visceral adipose tissue biopsies. Only in subcutaneous adipose tissue of lean patients,

we found a significantly higher concentration of the PPARγ ligand 9-HODE. Overall,

our data argue against the local production of known eicosanoid PPARγ agonists, at

least in the prolonged phase of critical illness.

As an alternative to locally produced PPARγ ligands, we also investigated whether

more upstream signals circulating in the serum of critically ill patients might increase

adipogenesis. We observed that not only proliferation but especially differentiation of

adipose tissue stem cells was stimulated in the presence of serum from both prolonged
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lean and overweight/obese patients. The identification of which serum component(s)

are responsible for the stimulation of proliferation and differentiation was beyond the

scope of this study.

Insulin therapy did not affect the studied markers of adipogenesis, as was ob-

served in earlier studies [4, 5]. A small effect of steroid treatment was observed

in the postmortem study, but steroid treatment was an exclusion criterion for the

in vitro study.

Why adipogenesis is increased during critical illness cannot be concluded from this

study. We speculated earlier that these newly formed adipocytes, which are more lipid

and glucose storage apt than older lipid-loaded adipocytes, might improve the meta-

bolic profile of the patient and reduce potential detrimental effects of high circulating

levels of these metabolites [21]. However, the observation that obesity prevents critical

illness-induced muscle wasting, but appears to increase the use of adipose tissue lipid

stores, argues against this hypothesis [6]. Maybe, adipogenesis is merely a side effect of

the profound endocrine alterations observed during critical illness.

The study has important limitations. First, we studied postmortem adipose tissue bi-

opsies from critically ill patients. Although biopsies were harvested minutes after death,

we cannot exclude the interference of agonal hypoxia with our results. However, such

interference would have similarly affected samples from lean and overweight/obese pa-

tients. Furthermore, increased adipogenesis was also observed in in vivo adipose tissue

biopsies from critically ill patients [5, 7]. Secondly, since we mainly studied overweight

to mildly obese patients, possibly severely to morbidly obese patients might display a

different adipogenic response. However, the findings on the protection against muscle

wasting and weakness were also observed in an overweight/obese patient population

with a similar BMI range as the current study [6]. Thirdly, although patients were

matched for the presence of diabetes, information on the type of diabetes and on the

use of antidiabetic drugs, such as thiazolidinediones, prior to ICU stay, is missing, both

of which might have affected adipogenesis in these patients. Lastly, our in vitro study

was designed to mimic the complex and multifactorial condition of critical illness.

Although this in vitro setup enables us to get a global overview of the adipogenic re-

sponse during critical illness, it cannot distinguish between specific effects of individual

factors present in the serum of critically ill patients.

Conclusions
Against what we hypothesized, adipogenesis was increased independently of initial BMI

in prolonged critically ill patients. Endogenous adipose tissue production of PPARγ ag-

onists was not observed in these patients. However, serum of prolonged critically ill pa-

tients was a strong stimulator of proliferation and especially differentiation of adipose

tissue stem cells. The latter findings suggest a humoral rather than a paracrine adipo-

genic signal during prolonged critical illness. Importantly, rather than having excess ad-

ipocytes, it might be the excess energy that is available in the adipose tissue of

overweight/obese patients which might be imperative during critical illness. Of interest,

if the usage of stored substrates from the adipose tissue as a source of energy indeed

can protect the muscle during critical illness, this raises the question whether supple-

menting lean patients with lipids could mimic such muscle-sparing effect.
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