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Abstract

In critically ill patients, organ dysfunctions are routinely assessed, monitored, and
treated. Mounting data show that substantial critical illness-induced changes in the
immune system can be observed in most ICU patients and that not only “hyper-
inflammation” but also persistence of an anti-inflammatory phenotype (as in sepsis-
associated immunosuppression) is associated with increased morbidity and mortality.
Despite common perception, changes in functional immunity cannot be adequately
assessed by routine inflammatory biomarkers such as C-reactive protein, procalcitonin,
or numerical analysis of leukocyte (sub)-counts. Cytokines appear also not suited due to
their short half-life and pleiotropy, their unexclusive origin from immune cells, and
their potential to undergo antagonization by circulating inactivating molecules.
Thus, beyond leukocyte quantification and use of routine biomarkers, direct assessment
of immune cell function seems required to characterize the immune systems’ status.
This may include determination of, e.g., ex vivo cellular cytokine release, phagocytosis
activity, and/or antigen-presenting capacity. In this regard, standardized flow-cytometric
assessment of the major histocompatibility-II complex human leukocyte antigen
(-D related) (HLA-DR) has gained particular interest. Monocytic HLA-DR (mHLA-DR)
controls the interplay between innate and adaptive immunity and may serve as a
“global” biomarker of injury-associated immunosuppression, and its decreased
expression is associated with adverse clinical outcomes (e.g., secondary infection
risk, mortality). Importantly, recent data demonstrate that injury-associated
immunosuppression can be reversed—opening up new therapeutic avenues in
affected patients. Here we discuss the potential scientific and clinical value of
assessment of functional immunity with a focus on monocytes/macrophages and
review the current state of knowledge and potential perspectives for affected
critically ill patients.
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Review
The immune system is an essential organ in higher life forms, and its dysfunction or

“failure” may be life-threatening. In humans, the immune system is ubiquitously distrib-

uted within all organs and consists of humoral and cellular components organized in

highly complex dynamic social network architecture-like structures [1]. Key functions

of the immune system embrace injury control in inflammation/infection and tumor

recognition/surveillance [1]. Despite its paramount importance, however, the immune

system or “immune organ” is mostly overlooked on intensive care units (ICU) today

[2–7]. This may at least partly be due to the fact that its functional status cannot be

adequately assessed by use of routine biomarkers such as C-reactive protein, procalcito-

nin, or numerical distribution of leukocyte (sub)-sets. Nevertheless, numerical assess-

ment of leukocyte (sub-)populations may provide important additional information,

e.g., when considerably deranged [8–10].

The typical initial immune system response to critical illness consists of systemic

and local release of inflammatory mediators and cytokines and activation of specific

immune and other cells. This may lead to distinct phenotype changes in immune cells

[4, 6, 11, 12]. The traditional understanding was that uncontrolled release of pro-

inflammatory mediators (e.g., interleukin (IL)-1, tumor necrosis factor (TNF)-α)

would determine adverse clinical outcomes in patients with septic shock [4, 11]. Con-

sequently, anti-inflammatory such as anti-TNF-α or anti-lipopolysaccharide (LPS)

strategies were then tested in large-scale clinical trials. However, respective trial re-

sults returned negative or indicated increased intervention-related mortality. This

highlighted that an anti-inflammatory approach would not provide general benefits

for larger populations of patients with sepsis/septic shock [2–5, 7, 12]. Thereafter, im-

mune status characterization in larger patient cohorts using novel biomarkers allowed

for a more profound understanding. When looking at an individuals’ immune re-

sponse, a high inter-individual variance and highly dynamic changes can be observed

over time (Figs. 1 and 2) [4]. Today, it is well established that many critically ill pa-

tients either show signs of co-existing inflammatory and counter-regulatory anti-

Fig. 1 Injury-associated immunosuppression in critically ill patients. Injury-associated immunosuppression
(IAI) may develop in critical illness. IAI was shown to be of importance in cases of persistence for ≥ 2 days.
Key future potential therapeutical options are listed. Monocytic HLA-DR expression (mHLA-DR, given in
bound antibodies per cell) may serve as a global marker of IAI

Pfortmueller et al. Intensive Care Medicine Experimental  (2017) 5:49 Page 2 of 16



inflammatory response early in critical illness [13, 14] or will undergo transition from

early pro- to later anti-inflammatory phenotypes (Fig. 2) [2, 4, 7, 11, 12]. The “net effect”

(i.e., the resulting phenotype) of such profound anti-inflammation was referred to as “sep-

sis- (or injury-) associated immunosuppression (SAI/IAI)” and embraces diminished re-

lease of pro-inflammatory mediators, reduced phagocytosis, and reduced expression of

cellular surface receptors involved in antigen-presenting activity (e.g., major histocompati-

bility complex (MHC) class II) (Fig. 3) [4, 7, 11, 12]. This may be associated with en-

hanced immunological tolerance, increased immune cell apoptosis, and altered gene

expression profiles [6, 11]. Interestingly, recent data show that respective changes are not

exclusive to circulating immune cells and that comparable anti-inflammatory phenotypes

can be found, e.g., in splenic or lung tissue and other solid organs [11].

From a clinical perspective, it seems pivotal to distinguish temporary from persisting

immunosuppression (Figs. 2 and 3). Data show that patients failing to recover from in-

jury- (or sepsis-) associated immunosuppression are at increased risk for (secondary)

infections or non-survival [4, 6, 11, 15] (Fig. 2). This affects patients with post cardio-

surgical conditions [16], trauma [17], burns [18], pancreatitis [19, 20], solid organ trans-

plantation [21], hepatic [22] or renal injury [23], stroke [24], myocardial infarction/

heart failure, and cardiac arrest [25–28], as well as sepsis [15]. Recent technological ad-

vances now allow for better recognition/monitoring of SAI/IAI—thus opening up new

avenues for the recognition, monitoring, and treatment of such functional immune

“organ failure” [7].

Fig. 2 Inter-individual injury-associated response patterns in critically ill patients. Patients with critical illness
respond differently to injury (e.g., sepsis). Whereas patient “A” undergoes a pronounced inflammatory phase
(net effects are shown) with regain of immunological homeostasis and subsequent survival, patient “B” enters a
persisting phase of injury-associated immunosuppression (IAI). In IAI, viral reactivation rates, secondary
(re-) infection rates, and mortality is increased. This underlines the importance of inter-individual response
patterns and need for individual patient characterization before application of interventional therapeutic
approaches (adapted from Hotchkiss et al., 2013 [4])
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Immunological markers in critical illness
For identification of patients at risk for SAI/IAI and associated complications, it

seems important to briefly summarize key immunologic responses to injury (Fig. 3).

The first response to injury or infection typically consists in local activation of

humoral factors (e.g., complement factors) followed by antigen-presenting cells

(APCs) that are at the innate-adaptive interface (i.e., monocytes/macrophages or den-

dritic cells) [6, 29]. When activated, APCs release cytokines (e.g., TNF-α, IL-1, IL-6)

and other mediators that attract and activate even more APCs and neutrophils, enhance

phagocytosis, and stimulate adaptive immune cells after migration to draining lymph

nodes (e.g., antigen-loaded dendritic cells) [6, 29]. Following phagocytosis, APC-derived

antigen presentation occurs via upregulation of class II transactivator (CIITA) and re-

localization of MHC class II molecules from intracellular storages [29, 30]. Enhanced

surface expression of antigen-loaded human leukocyte antigen (-D related) (HLA-DR; a

key MHC class II molecule) on monocytes/macrophages and dendritic cells then induces

a T cell response via binding to T cell receptors (TCR) and co-stimulatory molecules (e.g.,

CD86-CD28 and CD40-CD40L) (Fig. 3). Over time, a “counter-regulatory” response may

occur in monocytes/macrophages and dendritic cells with increased production of anti-

inflammatory cytokines (e.g., IL-10) [31, 32]. As a consequence, monocyte and dendritic

cell deactivation with diminished expression of both HLA-DR and co-stimulatory

Fig. 3 Infection-induced activation of key immune cells. In sepsis, bacterial infections trigger numerous
pathways resulting in activation of key antigen-presenting cells (APCs) (i.e., monocytes/macrophages,
dendritic cells). Activated APCs predominantly express pro-inflammatory cytokines and present antigens
bound to major histocompatibility (MHC) class II complexes (such as HLA-DR). Antigen-bound HLA-DR
triggers T-cell-receptor (TCR) and co-stimulatory molecule (e.g. CD 40-CD40L) binding. Adaptive immune
responses are initiated resulting in clearance of infection. In, e.g., cases of overwhelming infection, deactivation
of monocytes, as in sepsis-associated immunosuppression (SAI), may occur. SAI is characterized by a shift
towards an anti-inflammatory phenotype with predominant expression of IL-10 and diminished HLA-DR
expression, resulting in impaired clearance of infection and increased mortality. In IAI, the deactivated
phenotype can be observed immediately after injury
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molecules can be observed as an indicator of reduced phagocytosis, antigen presentation,

and diminished induction of adaptive immune responses. Furthermore, expansion of

myeloid-derived suppressor cells (MDSC), an immature population of myeloid cells with

immunosuppressive functions first described in cancer, was also demonstrated in patients

with sepsis [33, 34]. Very recently, MDSC were shown associated with prolonged im-

munosuppression, in particular with diminished T cell functions and development of

nosocomial infections in patients with sepsis [35, 36]. In addition, critically ill patients

commonly show marked apoptosis-induced lymphopenia and impaired lymphocyte func-

tion which contribute to sepsis- and injury-associated immunosuppression as recently

reviewed elsewhere [37].

Key cytokines: serum levels of IL-6, IL-10, and TNF-α

Serum cytokine levels are routinely assessed in some institutions for earlier recognition,

estimation of prognosis, and (intra-individual) follow-up of critically ill patients. How-

ever, it should be noted that they do not reflect immune cell functionality as cytokines

are mostly pleiotropic, derived from different cells including non-immune cells, may be

counteracted by natural inhibitors (e.g., gp130 for IL-6), and have variable clearance

rates [4, 6, 11, 12]. In the following, we discuss three cytokines with pathophysiologic

and/or diagnostic relevance in critical illness:

IL-6 is a potent pleiotropic cytokine with mainly pro-inflammatory effector function.

IL-6 is expressed by monocytes/macrophages, endothelial lineage cells, and fibroblasts

and augments immune responses via induction of T cell activation, B cell proliferation

and differentiation, and stimulates acute phase protein release (e.g. C-reactive protein)

[38]. Systemic IL-6 is detected rapidly with peak serum levels observed after about 2 h

after an inflammatory insult [38]. IL-6 is usually assessed via automated enzyme-linked

immunosorbent assay (ELISA) in specialized laboratories or via point-of-care tests

(blood, liquor) [39, 40]. Owing to its fast induction and short half-life, serial IL-6 as-

sessment may provide timely monitoring of an inflammatory burden when, e.g., com-

pared to serial C-reactive protein measurements. Although increased IL-6 levels

indicate adverse clinical outcomes in adults with sepsis/septic shock [38], implementing

of IL-6 measurement in routine diagnostic work up was not shown to improve patient-

centered clinical outcomes. Nevertheless, IL-6 was shown useful for sepsis diagnostics

in neonatal/pediatric critically ill patients [41].

IL-10 is regarded the most prominent and exemplary anti-inflammatory cytokine.

Comparable to IL-6, IL-10 is mainly expressed by monocytes/macrophages, has a short

half-life, and can be assessed by ELISA. IL-10 was evaluated in several studies and func-

tionally linked to the “classical” biphasic response model to severe injury [42, 43]. In

contrast to IL-6, increased IL-10 expression induces antigen tolerance, enhances SAI,

and increases susceptibility to infection, and IL-10 blockade reverses endotoxin toler-

ance in several preclinical studies, and some reports show a predictive value of IL-10

for mortality and/or (secondary) infection [42, 43].

TNF-α is a key pro-inflammatory cytokine predominantly released by monocytes/

macrophages in early sepsis. It auto-stimulates effector functions and enhances the ini-

tiation of adaptive immune responses [44]. Several studies showed that elevated TNF-α

levels are associated with increased mortality. When compared to other systemic
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inflammatory markers, it appears that TNF-α has lower discriminatory power with

respect to outcome prediction [43, 45].

Functional markers: ex vivo TNF-α release

Ex vivo LPS-induced TNF-α production (e.g., after 4 h of stimulation) in whole blood

allows for quantification of production/release of monocytes and dendritic cell-derived

TNF-α. Diminished ex vivo TNF-α release is a key feature of immunosuppression in

critically ill patients [4, 12, 46]. Nevertheless, ex vivo TNF-α release may not be a suit-

able diagnostic marker for cellular immune function as it requires standardized proto-

cols for sample handling and specific stimulation conditions [46]. Today, no generally

accepted standardized protocol for assessment of ex vivo TNF-α release exists, hinder-

ing multicenter studies [46]. Recently, whole-blood monocytic intracellular TNF-α as-

sessment by flow cytometry was tested and showed promising results with regard to

improved test feasibility [47].

Functional markers: phagocytosis assays

Phagocytosis involves recognition and engulfment with subsequent clearance of patho-

gens [48]. Numerous predominantly innate immune cells perform phagocytosis (e.g.,

neutrophils, monocytes/macrophages, dendritic cells) [48]. Diminished phagocytic cap-

ability was linked to increased susceptibility for (secondary) infection in rodent models

whereas in humans, the direct influence of critical illness on phagocytosis is incom-

pletely understood [49]. Phagocytosis of neutrophils may be conserved in patients with

sepsis, while in parallel, other neutrophil functions including chemotaxis and/or gener-

ation of oxidative burst may be impaired [49]. In general, phagocytosis assays are het-

erogeneous with varying specificity. Standardized laboratory protocols are missing,

resulting in high intra- and inter-lab variation. Thus, phagocytosis assays may be of lim-

ited use for assessment of immune function in both clinical routine and multicenter

clinical trials testing immunological interventions.

Functional markers: mHLA-DR expression

HLA-DR is a MHC class II molecule and predominantly expressed on monocytes/

macrophages, dendritic cells, and B cells [29]. Its surface expression is indispensable

for antigen presentation [29]. While increased HLA-DR expression reflects activation

of immune cells, diminished expression thereof exhibits a phenotype with downregu-

lation of antigen-presenting capacity and a shift from pro- to anti-inflammatory cyto-

kine production [4, 12]. Surface expression of HLA-DR on monocytes/macrophages is

crucial for initiation of adaptive immune responses [11, 29]. This signal is paralleled

and/or augmented by activation of co-stimulatory molecules (e.g., CD40- CD40-

ligand binding) (Fig. 3). Given the importance of monocytic HLA-DR (mHLA-DR)

expression in respect to induction of adaptive immune responses, the key interplay of

monocytes and dendritic cells with T cells was colloquially referred to as “immuno-

logical synapsis.” Assessment of mHLA-DR expression was thus proposed to serve as

a “global” functional marker of immune function [4, 5, 7, 12]. In fact, the significance

of mHLA-DR expression was first described about 30 years ago in patients
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undergoing organ transplantation when patients with low HLA-DR expression could

be weaned from iatrogenic immunosuppression without transplant rejection [50].

Flow-cytometric assessment of mHLA-DR expression
Monocytic HLA-DR expression is performed via fluorescence-activated cell sorting

(FACS) from EDTA samples [51, 52]. FACS allows for simultaneous enumeration and

assessment of several surface and intracellular antigens on specific immune cell subsets

following staining with fluorochrome-labeled antibodies (Fig. 4). In 2005, the Quanti-

brite™ HLA-DR assay was demonstrated as the first standardized method for flow-

cytometric mHLA-DR assessment with low inter-laboratory variability (coefficient of

variation (CV) 15%, inter-laboratory CV < 4%) enabling comparison of data sets col-

lected in multicenter studies [51]. Previous methods reporting percentages of HLA-DR

positive cells (%HLA-DR) or mean fluorescence intensities (MFI) lacked an internation-

ally accepted analytical standard and precluded between-center comparison of results

[51]. In contrast, the Quantibrite™-HLA-DR assay harnesses calibration beads and a

specifically formulated antibody-fluorochrome conjugate which allows the measure-

ment of bound HLA-DR antibodies per cell (mAb/cell) independently from the com-

bination of flow cytometer or instrument settings used in different laboratories [51].

Despite recent progress in standardization, flow cytometry still requires specialized lab

equipment and staff, standardized analytical protocols, and timely handling of samples

(maximum of 4–6 h in standard EDTA-tubes at room temperature for mHLA-DR)

[51]. Delayed assessment of samples may induce activation of monocytes resulting in

Fig. 4 Flow-cytometric assessment of monocytic HLA-DR expression. Upper row: after staining of EDTA samples
with specific antibodies, HLA-DR expression is assessed on CD14+ monocytes by flow cytometry. Lower row:
(left) Quantibrite™-PE beads are used to calculate a calibration curve (middle) for HLA-DR assessment on CD14+

monocytes. (Right) mean fluorescence intensity (MFI) values for HLA-DR on monocytes are converted in a given
sample to molecules per cell using the calibration curve
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artificially increased mHLA-DR expression. Storage of EDTA-anticoagulated whole blood

on ice or in a refrigerator or use of cell preservative containing tubes such as Cyto-Chex®-

BCT increase analytic stability for mHLA-DR ([51] and Meisel et al., unpublished data).

However, Cyto-Chex®-BCT tubes are expensive and not commonly available. Stained and

fixed samples can be stored for at least 52 h before analysis [51]. Thus, mHLA-DR assess-

ment as a biomarker for immune function usually requires establishing of the method in

nearby hospital laboratories [7, 52]. In addition, blood samples are usually processed dur-

ing standard laboratory opening hours and not 24/7 [51, 52]. Recently, an automated table

cytometer was investigated as potential point-of-care tool for bedside mHLA-DR assess-

ment which may be an important step to improve the availability of immune monitoring

tools for ICU clinicians [53]. Further, quantification of HLA-DR expression and of other

markers of innate and adaptive immune (dys)-regulation by real-time or digital PCR may

help to overcome some of the above mentioned limitations of flow-cytometric mHLA-DR

analysis and thus improve identification of patients with SAI/IAI [54–57]. However, the

utility of theses assays needs further investigation.

Threshold levels

Using the earlier non-standardized method for mHLA-DR assessment as percent positive

monocytes, most investigators (including our group) have established a cut-off at 30%

HLA-DR-positive monocytes for severe injury-associated immunosuppression (earlier re-

ferred to as “immunoparalysis”) [51]. A recent comparison of the conventional method

with the standardized quantitative assay for mHLA-DR (given in mAb/cell) performed by

us revealed that the (earlier) cut-off value of 30% HLA-DR positive monocytes corre-

sponds to about 5000 mAb/cell and 45% mHLA-DR to about 8000 mAb/cell [51]. The

range between 30 and 45% HLA-DR positive monocytes was termed “borderline im-

munosuppression.” Thus, a cut-off value of 8000 mAb/cell may be used to indicate SAI/

IAI and was used in subsequent interventional clinical trials [58]. Importantly, not single

diminished values of mHLA-DR should be regarded as clinically relevant but rather the

persistence of low mHLA-DR levels indicating failure for recovery [4, 7, 12, 15].

Monocytic HLA-DR expression in specific diseases
Sepsis/septic shock

Sepsis is the clinical condition in which the mHLA-DR expression is best evaluated. Re-

duced mHLA-DR expression on admission [59, 60], days 1–3 [15, 45, 60] and days 6–

8, [45, 59, 61] was significantly associated with increased mortality. Some studies show

that the outcome-relevant difference in mHLA-DR expression is apparent only on days

3–4 (or later) with mHLA-DR returning to normal levels in survivors but not in non-

survivors [15, 62]. Two further studies showed that the dynamic change (or recovery

slope) in mHLA-DR expression between days 3 and 7 post injury is associated with

mortality [15, 61, 62]. In one of these studies, it was shown that despite non-significant

predictive value for single mHLA-DR values at time points 0, 3, and 7, the delta value

between measurements days 0–3, 0–7, and 3–7 were highly predictive for mortality

[62]. These results were confirmed in both adult [45] and pediatric patients [61]. One

explanation for the better predictive value of relative changes in mHLA-DR expression

than absolute values may be the high inter-individual variability of HLA-DR levels on
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monocytes. Monocytic HLA-DR expression on days 3–5 and 6–8 also independently

predicts development of secondary infections [63]. Recovery of mHLA-DR may also re-

flect normalization of key metabolic pathways in sepsis [64–66], but further large-scale

clinical data is needed.

Major surgery

Several studies assessed whether reduced mHLA-DR expression predicts adverse out-

come following major surgical procedures. Culprits for post-surgical immune suppres-

sion may be surgical trauma, related intraoperative hypotension [67], and increased

perioperative release of corticosteroids or catecholamines [68]. Moreover, anesthetic

drugs such as fentanyl [69] may contribute to injury-associated immunosuppression

(IAI). In patients with cardiovascular surgery, use of extracorporeal circuits is typically

associated with a substantial pro-inflammatory response [16]. Cardiopulmonary bypass

may be followed by IAI reflected by impaired monocytic ex vivo LPS-induced cytokine

release and decreased mHLA-DR [16, 70, 71]. The nadir of mHLA-DR was typically

observed on postoperative days 1–3, but diminished mHLA-DR expression was shown

to persist up to postoperative day 10 in a considerable number of patients [70, 71]. In

two larger studies investigating the predictive power of mHLA-DR on outcome in

pediatric and adult patients post-cardiac surgery, reduced mHLA-DR expression on

postoperative day 3 was associated with increased length of ICU stay/mechanical venti-

lation and development of postoperative sepsis [71, 72] after adjustment for bypass

time, cross clamp time, complexity of surgical procedure, and a pediatric mortality risk

score [72]. In adults, mHLA-DR expression on postoperative days 1–5 was significantly

different between patients who later developed sepsis vs. with an uncomplicated course

and was a factor with a high discriminatory power to identify patients with infection

post cardiac surgery [16]. In patients with ruptured abdominal aortic aneurysms,

mHLA-DR expression after surgery was significantly associated with mortality although

this was not related to increased postoperative infection rates [73].

Multiple trauma

Diminished mHLA-DR expression was observed in many patients with multiple trauma

[17, 74]. In a prospective observational trial in 105 severely injured patients (injury sever-

ity score, ISS > 25), rise in mHLA-DR until days 3–4 following trauma, and not at any

earlier day, was associated with non-development of severe infection/sepsis after adjusting

for confounders [17]. The dynamic effect of mHLA-DR recovery was also shown in pa-

tients with multiple trauma and ISS > 9 [75]. Further studies report an association be-

tween mHLA-DR expression and occurrence of post-trauma sepsis as early as day 2 [75].

Monocytic HLA-DR expression was also associated with increased intrapulmonary shunt-

ing after severe trauma which is associated with increased incidence of pulmonary sepsis

and development of acute respiratory distress syndrome (ARDS) [75].

Central nervous system (CNS) injury

Infection is a common complication in patients after acute CNS injury. In particular,

pneumonia is associated with worse neurological outcome and remains a leading cause

of death. Experimental studies demonstrate that CNS injury-induced suppression of
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cellular and humoral immune functions contribute to the high incidence of infec-

tions [24]. Several clinical studies demonstrated reduced mHLA-DR expression in

patients after cerebral ischemia, subarachnoid hemorrhage, spinal cord injury, or

neurosurgery [76–78]. Importantly, CNS-injured patients with subsequent infec-

tious complications showed lower mHLA-DR levels than those with an uncompli-

cated clinical course as early as day 1 after the insult and well before onset of

infection [76–78] indicating that impaired host responses contribute to an in-

creased infection risk after CNS injury. Very recently, we confirmed in a large pro-

spective multicenter study stroke-induced immunosuppression (as indicated by low

mHLA-DR expression) as an independent risk factor for the development of pneu-

monia besides the known neurological risk factors leading, e.g., to dysphagia and

higher risk of aspiration [77].

Burn injury

Only few data are available in burn patients. One study in patients with severe burn in-

jury (> 30% of body surface) indicates that days 2–3 mHLA-DR expression is signifi-

cantly associated with increased mortality [18]. Patients who later developed sepsis had

significantly lower mHLA-DR expression in the two ensuing days [18].

Pancreatitis

Reduced mHLA-DR expression is associated with increased disease severity in patients

with severe pancreatitis [19, 20]. Suppression of mHLA-DR or decreased mHLA-DR is

associated with development of sepsis [19, 20]. After day 3, failure to recover in

mHLA-DR expression was associated with decreased survival [19].

Transplantation

The utility of mHLA-DR assessment in patients post (e.g., renal) transplantation was

investigated more than 25 years ago. Increased mHLA-DR expression was observed to

be associated with an increased rate of transplant rejection [21, 79] and may serve to

monitor iatrogenic immunosuppression [50]. Failure to recover to normal mHLA-DR

levels after transplantation is associated with increased rates of late post-transplant

pneumonia in pediatric populations [80]. In adults after liver transplantation, reduced

mHLA-DR expression levels are associated with pneumonia [81] and cytomegaly virus

(CMV) reactivation [82].

Cardiopulmonary arrest

Monocytic HLA-DR expression predicts outcome in patients after cardiac arrest (CA)

[25]. In 55 patients after out-of-hospital CA from non-shockable rhythm, mHLA-DR

levels were significantly decreased when compared to healthy controls [25]. In this

study, non-survivors showed different mHLA-DR dynamics between days 0 to 1 and 1

to 3 when compared to survivors. Whereas the slope between days 0 and 1 was steeper

in non-survivors, mHLA-DR expression continued to decrease from days 1 to 3 in

non-survivors (increased after day 1 in survivors) [25].
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Other clinical conditions incl acute kidney injury and acute hepatic failure

The predictive value of mHLA-DR on outcome of patients with acute kidney injury

(AKI) was assessed in one study [23]. Despite decreased mHLA-DR expression in AKI

patients when compared to controls, the study did not identify a predictive value for

mortality [23]. Few studies investigated mHLA-DR expression in patients with acute or

decompensated chronic liver disease [22, 83]. Respective studies found a significant as-

sociation between mHLA-DR expression and mortality at admission with an increase

in predictive value when dynamic changes over time were investigated [83]. The dis-

criminatory power of mHLA-DR for prediction of mortality was either similar [83] or

lower than for the Model of End-Stage Liver Disease (MELD) score [22].

Injury-associated immunosuppression: reversal by therapeutic interventions
In the light of the potential of mHLA-DR for immune monitoring, several interventional

biomarker-guided therapeutic strategies were tested in clinical trials. Respective ap-

proaches included extracorporeal removal of inhibiting factors via selective immunoad-

sorption [84], immunostimulation using interferon gamma (IFN-γ) [32] or stimulation

with granulocyte-macrophage-colony-stimulating factor (GM-CSF) [58, 85, 86]. Potential

additional approaches embrace interleukin 7 (IL-7) or anti-PD ligand 1 molecules (anti

PD-L1). Future potential immunomodulatory approaches in sepsis are given in Fig. 5.

Interferon gamma (IFN-γ)

Stimulation of IFN-γ receptors, which are ubiquitously expressed, results in activation

of numerous pro-inflammatory pathways. In a landmark trial, Doecke et al. showed that

Fig. 5 Potential future immunomodulatory approaches in sepsis. Key approaches to reverse sepsis-associated
immunosuppression include cytokine-induced stimulation of monocyte/macrophage function (GM-CSF, IFN-γ),
administration of survival factors for T cells (IL-7), blockade of anti-inflammatory mechanisms (anti-IL-10 antibody/
antagonization of regulatory T-cell function), approaches to target immune cell exhaustion/apoptosis (anti-pro-
grammed death (PD) receptor 1 or PD-ligand1 (PD-L1)), and blockade of negative co-stimulators (e.g.,
cytotoxic T-lymphocyte-associated protein 4 [CTLA-4] or B- and T-lymphocyte attenuator (BTLA))
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IFN-γ immunostimulation restores mHLA-DR expression in patients with sepsis-

associated immunosuppression (SAI) [32]. Clearance of infection may be enhanced

by IFN-γ use in adult patients with invasive fungal sepsis [87], and in a random-

ized double-blind clinical trial in trauma, a decreased incidence for ventilator-

associated pneumonia was observed in patients with mHLA-DR < 30% receiving

inhaled IFN-γ [74]. IFN-γ treatment was shown to reverse SAI resulting in higher

TNF-α-, decreased IL-10, and increased mHLA-DR levels indicating reversal of the

SAI phenotype [44]. Whether administration of IFN-γ in IAI results in lower mor-

tality of affected patients remains unclear and larger investigations are needed but,

importantly, major side effects of IFN-γ-induced immunostimulation were not ob-

served [32, 74].

Granulocyte-macrophage-colony-stimulating factor (GM-CSF)

In a randomized controlled double-blind placebo-controlled trial in 38 patients with

sepsis, we could demonstrate reversal of persisting SAI following one treatment of

subcutaneous GM-CSF [58]. In addition to reversal of SAI (as defined by mHLA-DR

expression > 15,000 mAb/cell), we observed improvements in relevant patient-

centered outcomes such as shortened time of mechanical ventilation [58]. The finding

that GM-CSF reverses SAI is supported by other groups [86]. Whether clinical end-

points such as secondary infection rates are affected by therapeutical application of

GM-CSF is under research (NCT02361528).However, smaller studies showed promising

results with lower infection rates [88] or shorter duration of infection in immunosup-

pressed critically ill patients treated with GM-CSF. In another randomized-controlled trial

in patients with sepsis and severe respiratory dysfunction, oxygenation significantly im-

proved in patients receiving GM-CSF [89]. In newborns, we could recently demonstrate

that reduced mHLA-DR expression may reflect immunological immaturity in very early

newborns [90] and a meta-analysis on GM-CSF therapy indicated increased survival rates

in very-low pre-term infants (< 2000 g) and infants with neutropenia when treated with

GM-CSF [91]. Importantly, none of the clinical studies reported relevant side effects of

GM-CSF treatment.

Conclusions
Critical illness may often induce persisting injury-associated immunosuppression

with adverse effects on relevant patient-centered outcomes. However, despite the

key task of ICU physicians to detect, monitor, and follow up on organ dysfunc-

tions, functional failure of the “immune organ” seems currently mostly overlooked

as it cannot be adequately assessed via use of routine biomarkers such as numer-

ical distribution of leukocyte (sub)counts or systemic levels of soluble markers such

as cytokines, procalcitonin, or acute phase proteins. Importantly, quantitative as-

sessment of a given cell population does not per se allow to conclude on its func-

tional status.

Today, flow-cytometric assessment of the mHLA-DR expression may serve as a

standardized “global” biomarker to evaluate immune function. Persisting reduced

mHLA-DR expression reflects a distinct immunological phenotype that is associated

with adverse clinical outcomes. Nevertheless, mHLA-DR assessment currently
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requires specialized laboratories that may not be available in all institutions. Following

demonstration of immunological efficiency, biomarker-guided immunological inter-

ventions for injury-associated immunosuppression should now be performed in ad-

equately characterized populations using relevant patient-centered clinical outcomes

(e.g., mortality). We postulate that in the future of intensive care, personalized medi-

cine that considers the individual immune functionality will be needed to significantly

improve the outcome of affected patients.
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