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Abstract

Background: In sepsis, early outcome prediction would allow investigation of both
adaptive mechanisms underlying survival and maladaptive mechanisms resulting in
death. The aim of this study was to test whether early changes in heart rate monitored
by telemetry could predict outcome in a long-term rat model of fecal peritonitis.

Methods: Male Wistar rats (n = 24) were instrumented with a central venous line for
administration of fluids, antibiotics and analgesics. A telemetry transmitter continuously
collected electrocardiogram signals. Sepsis was induced by intraperitoneal injection of
fecal slurry, and the animals were observed for 48 h. Additional animals underwent
arterial cannulation at baseline (n = 9), 4 h (n = 16), or 24 h (n = 6) for physiology and
laboratory measurements.

Results: 48-h mortality was 33% (8/24), with all deaths occurring between 4 and 22 h.
Septic animals were characterized by lethargy, fever, tachycardia, positive blood cultures,
and elevated cytokine (IL-1, IL-6, TNF alpha) levels. An increase in heart rate ≥ 50 bpm
during the first 4 h of sepsis predicted death with sensitivity and specificity of
88% (p = 0.001).

Conclusions: In this long-term rat sepsis model, prognostication could be made early by
telemetry-monitored changes in heart rate. This model enables the study of underlying
mechanisms and the assessment of any differential effects of novel therapies in predicted
survivors or non-survivors.

Keywords: Sepsis, Animal model, Fecal peritonitis, Telemetry, Electrocardiogram, Heart
rate, Outcome

Background
Sepsis, the dysregulated host response to infection leading to organ dysfunction, is a

common and frequently fatal condition [1], with as many annual deaths as those from

acute myocardial infarction [1, 2]. Despite major efforts over the last decade, mortality

rates still range between 25 and 50% [1, 3, 4]. Hence, a better understanding of the

underlying pathophysiology and new therapeutic concepts are urgently needed to im-

prove outcome. To date, mechanistic studies have been predominantly performed with

comparison against non-septic control (sham) animals. However, this approach has the

important limitation of not discriminating between adaptive mechanisms of survival
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and maladaptive mechanisms of death. Early prediction of outcome in an individual

animal would enable such discrimination. It would also greatly facilitate the testing of

novel therapies to determine any survival impact in likely non-survivors while focusing

on safety and the rate/degree of recovery in likely survivors.

We previously reported that echocardiography-derived stroke volume and heart rate

could prognosticate as early as 3–6 h in a 3-day rat model of fecal peritonitis [5]. Echo-

cardiography however requires anesthesia, expensive equipment, and experienced

investigators. Heart rate can also be measured in real-time by telemetry, with continu-

ous monitoring of the electrocardiogram (ECG) in awake animals. In addition, ECG

telemetry provides information on heart rate variability and documents the precise time

of demise. The aim of the current study was to test whether telemetry-monitored

changes in heart rate during early sepsis could predict outcome in a long-term (48 h)

rat model of fecal peritonitis. For clinical relevance, this model received fluid resuscita-

tion and antibiotics, and analgesia to meet the high requirements of animal welfare.

Methods
Animal model

All animal experiments were performed in the animal laboratories of the University

Hospital Zurich, Switzerland. All protocols were approved by the Animal Experimenta-

tion Committee of the Veterinary Office of the Canton of Zurich, Switzerland. Princi-

ples of the 3Rs were implemented [6, 7].

The current animal model has been adapted from a model of fecal peritonitis,

which is established and still being in use at University College London, UK [5, 8, 9].

Figures 1 and 2 summarize the timelines and numbers of animals (n) for each group.

A total of 61 animals were included in this study (48 h outcome study: sepsis n = 24

and sham n = 6; physiology and laboratory measurement study: baseline n = 9; 4 h

sepsis n = 16; 24 h sepsis n = 6).

Fig. 1 Timeline long-term experiments including heart rate monitoring and mortality. AB antibiotics; OP
operation (instrumentation)
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Under general anesthesia (2.5% isoflurane in room air), male Wistar rats were instru-

mented with a central venous line and a swivel-tether system allowing the rat, after

recovery from anesthesia, to have unimpeded movement in its cage. Details on instru-

mentation have been reported previously [10].

The animals received the opioid analgesic nalbuphine subcutaneously prior to instru-

mentation (2 mg/kg) and as a continuous infusion thereafter (1 mg/kg/h) [10]. The

rationale for the use of nalbuphine has been summarized recently [11].

While still under anesthesia, sepsis was induced by an intraperitoneal injection of 2 mL/

kg fecal slurry (25% suspension). Fecal slurry contained feces collected from several

animals of the same batch that was suspended in Ringer’s acetate, and then filtered.

Therefore, our model has two interventions, namely, surgery (comprising cannulation of

the internal jugular vein and subcutaneous implantation of the telemetry device), and

Fig. 2 Timeline for short-term experiments including hemodynamic measurements and blood sampling.
The 4 h timepoint is prior to fluid resuscitation. AB antibiotics; OP operation (instrumentation)
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injection of fecal slurry into the peritoneal cavity immediately thereafter. Sham animals re-

ceived fluids and nalbuphine, but did not receive any intraperitoneal injection.

Fluid resuscitation with Ringer’s acetate was commenced 4 h after the septic insult

through the central venous line. After a fluid challenge of 20 mL/kg given over 15 min,

crystalloids were infused at a rate of 10 mL/kg/h between 4 and 8 h. At 8 h, the infu-

sion rate was reduced to 5 mL/h, and at 24 h halved again to 2.5 mL/h. This fluid

resuscitation protocol was adapted from an established animal model [5, 8] by replacing

the 1:1 solution of 6% hetastarch and glucose with crystalloids and reducing the overall

amount of fluids administered.

Ceftriaxone 30 mg/kg was given intravenously 4 and 24 h after the septic insult [12]. To

confirm that our animals developed clinically relevant infection, two additional animals

were instrumented as described above, and received fecal slurry but no antibiotics. 6 h

after sepsis induction, the blood and peritoneal fluids were sampled for microbiological

analyses performed at the Institute for Medical Microbiology, University Zurich.

Baseline values of heart rate were collected 15 min after the end of instrumentation,

when the animal had recovered from general anesthesia. Observation time in the

long-term experiments was 48 h. Time of death was defined by asystole in the ECG.

For physiology and laboratory measurements, animals were prepared as described

above (Fig. 2). At baseline, 4 h (prior to fluid resuscitation) or 24 h, a catheter was

placed in the right carotid artery under isoflurane anesthesia, which allowed blood

pressure measurements and arterial blood sampling. The arterial line was attached to a

pressure transducer (ADInstruments, Oxford, UK), as previously described [10].

Blood gas analysis was performed with an Epoc blood analyzer (Epocal Inc. Ottawa, On-

tario, Canada). Plasma cytokines were analyzed with a Bio-Plex Pro Rat cytokine 24-plex

assay using the Bio-Plex 200 Suspension Array System (Bio-Rad Laboratories AG, Cres-

sier, Switzerland). B-type natriuretic peptides (BNP) and troponin ITC complex were mea-

sured using the Rat BNP and Rat Troponin ITC Complex Assay kits (MesoScale

Discovery, Rockville, MD, USA) according to the manufacturers’ instructions.

Heart rate measurements

Under general anesthesia, a telemetry transmitter (Model RT50B, Millar, Houston, TX,

USA) was implanted subcutaneously under the xyphoid process. Two electrodes were

placed subcutaneously to either side of the chest, as previously described [10]. No

prophylactic antibiotics were given for this procedure.

ECG signals were collected by a SmartPad TR181 (Millar) at a sampling rate of 1 kHz and

then transferred via a PowerLab (ADInstruments) to a PC. Heart rate and heart rate variabil-

ity were analyzed with LabChart V7 (ADInstruments) by a blinded investigator (MA) using

published guidelines [13]. Ectopic beats and artifacts were excluded from analysis. R-R inter-

vals were classified as normal (NN) between 100 and 250 ms. A NN difference > 50 ms was

defined as the variation threshold. Settings included a FFT size of 1024 and a window accord-

ing to Hann [14]. We focused our analysis of HRV on SDNN (standard deviation of

normal-normal (NN) intervals (=R-R intervals); reflecting cyclic components of sympathetic

and parasympathetic activity); total power, the variance of all NN intervals; and the ratio of

LF/HF, where LF represents the power of low-frequency range (sympathetic response) and

HF the power of high-frequency range (parasympathetic response) [14].
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Statistics

All results are indicated as mean ± standard deviation (SD) with the exception of Figs. 4

and 5 where standard error of the mean (SEM) was used to enhance readability. As-

suming a sepsis mortality of 25–50% in the long-term study, a sample size of 24 septic

animals was calculated to have at least six animals in the group of non-survivors. In the

short-term experiments, a minimum of five animals was accepted in the group of pre-

dicted non-survivors in order to limit the number of animals suffering from a high

severity of illness. Comparisons between groups were analyzed with ANOVA and

Tukey’s post hoc test, as appropriate. For data in Table 1, cytokines and cardiac

Table 1 Physiological and laboratory variables

Variables Sham,
baseline

Sepsis, 4 h
n = 16

Sepsis, 24 h p value
(ANOVA)

n = 9 Predicted
survivors
n = 11

Predicted non-
survivors
n = 5

n = 6

Physiological variable

Rectal temperature [°C] 37.4 (0.3) 38.5 (0.4)* 39.1 (1.3)* 38.1 (0.8) 0.003

Hemodynamic variables

Heart rate [1/min] 346 (39) 383 (44) 444 (91)* 418 (41) 0.012

Change in heart rate from
baseline [1/min]

not
applicable

− 71 (53) 78 (24)$¶ −19 (26) < 0.001

MAP [mmHg] 89 (13) 94 (20) 91 (19) 91 (15) 0.949

Arterial blood gases

PaO2 [kPa] 9.63 (1.97) 9.62 (2.57) 9.21 (1.75) 8.96 (2.62) 0.946

PaCO2 [kPa] 5.07 (0.96) 5.50 (1.26) 5.21 (0.81) 7.12 (2.29) 0.089

pH 7.38 (0.05) 7.40 (0.03) 7.43 (0.06) 7.36 (0.11) 0.406

Base excess [mmol/L] − 2.6 (4.7) 0.6 (5.4) 0.7 (3.0) 2.7 (2.4) 0.302

Lactate [mmol/L] 1.0 (0.3) 1.2 (0.2)¶ 1.6 (0.7) 1.9 (0.8) £ 0.014

Glucose [mmol/L] 13.0 (1.7) 12.6 (2.8) 15.6 (2.5) 11.3 (1.4) 0.055

Hematocrit [%] 34 (3) 34 (7) 45 (4)*$ 37 (7) 0.011

Cytokines (median, IQR)

Interleukin-1 beta [pg/mL] 72 (57–92) 129 (105–156) 332 (81–421)*¶ 58 (19–91) 0.001

Interleukin-6 [pg/mL] 0 (0–0) 236 (138–691)* 3062 (134–8190)* 109 (0–157) < 0.001

Interleukin-10 [pg/mL] 116 (59–149) 182 (155–493) 573 (114–1051) 258 (113–367) 0.027

TNF alpha [pg/mL] 33 (0–49) 93 (63–154)*¶ 135 (47–166) 35 (0–37) < 0.001

CXCL-1 [pg/mL] 195 (51–497) 877 (650–1492)* 1562 (580–1773)* 339 (111–454) 0.001

MCP-1 [pg/mL] 1.6 (1.3–1.6) 4.9 (3.4–5.5)* 9.3 (3.1–14.4)* 5.4 (1.1–9.1) 0.001

MIP-1 [pg/mL] 8 (8–14) 50 (15–150)* 262 (71–474)*¶ 17 (1–21) < 0.001

Cardiac biomarkers (median, IQR)

Troponin [ng/mL] 0.0 (0.0–0.03) 0.0 (0.0–0.0) 0.0 (0.0–0.05) 0.0 (0.0–0.06) 0.152

BNP [pg/mL] 0.4 (0.2–0.8) 0.3 (0.2–0.5) 0.0 (0.0–0.3) 1.0 (0.3–2.5) 0.099

Values are shown as mean (SD), except for cytokines and cardiac biomarkers, where data were not normally distributed
(median, interquartile range = IQR). Groups were compared using ANOVA (for normally distributed data) or Kruskal-Wallis
test (for not-normally distributed data) followed by according post hoc tests correcting for multiple testing. Significant
group differences (p < 0.05): *sham baseline versus sepsis 4 h, $predicted survivors versus non-survivors, ¶sepsis 4 h
versus sepsis 24 h, £ sham baseline versus 24 h. BNP B-type natriuretic peptide; CXCL-1 chemokine (C-X-C motif) ligand 1,
a neutrophil chemoattractant involved in clearance of bacterial infections; MAP mean arterial pressure; MCP-1 monocyte
chemoattractant protein-1, primarily secreted by activated monocytes and macrophages; MIP-1 macrophage
inflammatory protein-1, chemotactic cytokine produced by macrophages upon endotoxin activation; TNF tumor
necrosis factor

Rudiger et al. Intensive Care Medicine Experimental  (2018) 6:28 Page 5 of 13



biomarkers were not normally distributed and were therefore presented as median,

interquartile range and tested using the Kruskal-Wallis test followed by post hoc test

(Dunn) correcting for multiple testing. The quality of heart rate and its changes as

diagnostic tests were described by the area under the ROC (receiver operator character-

istic) curve (AUC). Fisher’s exact test was used to compare positive and negative pre-

dictive values between groups. A p value below 0.05 was considered significant, and all

hypothesis testing was two-tailed. Prism 6 (GraphPad Software, La Jolla, CA, USA) was

used to perform statistics and draw the figures.

Results
Animal model

Twenty-four septic animals (weight 396 ± 73 g) and 6 sham animals (weight 366 ± 33 g)

were observed for 48 h. Septic rats became lethargic and febrile as features of acute

illness. Eight septic animals (33%) died after 13.7 ± 6.6 h, with all deaths occurring

between 4 and 22 h (Fig. 3). Animals surviving beyond 24 h showed signs of recovery

with increased activity and improved interest in their surroundings, but developed

edema and a bloated abdomen. Heart rate changes are displayed in Fig. 4. Results of

the heart rate variability analysis are given in Fig. 5.

Laboratory findings

Microbiological cultures of ascites revealed gram-negative (Escherichia coli) and

gram-positive (Enterococcus sp., alpha-hemolytic streptococci, Corynebacterium sp.)

bacteria. Blood cultures were positive for E. coli, Enterococcus faecalis, and Staphylococcus

sp. Antibiotic-resistance tests confirmed that the E. coli was sensitive to ceftriaxone.

Physiological and laboratory variables were measured in 9 sham and 22 septic

animals. Results are displayed in Table 1.

Fig. 3 Kaplan-Meier survival curves in septic animals according to the change in heart rate between
baseline and 4 h of sepsis. Twenty-four septic Wistar rats were observed for 48 h. Survival curves are shown
for animals with a change in heart rate between baseline and 4 h of < 50 bpm (dashed line; mortality 1/15 = 7%)
and those with a change ≥ 50 bpm (continuous line; mortality 7/9 = 78%), log rank p< 0.001
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Prognosticators of outcome

Compared to baseline values, changes in heart rate at 4 and 6 h were significantly

different in sepsis survivors compared to non-survivors: − 7 ± 48 bpm vs 65 ± 53 bpm

(p = 0.003) and 21 ± 53 bpm vs 120 ± 61 bpm (p = 0.001), respectively. Prognosticators

of death in septic animals are shown in Table 2. Importantly, an increase in heart rate

≥ 50 bpm during the first 4 h of sepsis occurred in 7 of 8 non-survivors (sensitivity

88%) and 2 of 16 survivors (specificity 88%), Fisher’s exact test p = 0.001. Hence, the

positive and negative predictive values for this heart rate cut-off level were 78 and 93%,

respectively.

Parameters from septic animals sacrificed at 4 h were tested for their prognostic po-

tential to discriminate between predicted survivors and non-survivors (Table 3). Only

hematocrit (AUC 0.93, 95% CI 0.779–1.0, p = 0.008) and MIP-1 (AUC 0.82, 95% CI

0.604–1.0, p = 0.047) were statistically different between the two groups.

Discussion
We describe a clinically relevant rat model of sepsis with a 48 h mortality rate of 33%.

The animals developed a typical sepsis phenotype with clinical signs of illness (reduced

activity, fever), tachycardia, elevated plasma cytokine levels, positive blood cultures, and

peritonitis on postmortem examination. All deaths occurred between 4 and 22 h while

animals surviving beyond this range showed clear signs of clinical recovery. Heart rate

changes during early sepsis were prognostic for 48 h mortality. At 4 h an increase in

heart rate ≥50 bpm over baseline predicted mortality with positive and negative pre-

dictive values of 78% and 93%, respectively.

The current sepsis model is based upon a well-established rat model of fecal periton-

itis [5, 8] but to which antibiotics and a continuous infusion of the potent opioid anal-

gesic, nalbuphine [10, 11] have now been added. Injection of intra-peritoneal fecal

slurry in non-antibiotic-treated animals results in polymicrobial sepsis with positive

Fig. 4 Heart rate in septic animals. Temporal changes of telemetry-monitored heart rate after induction of
sepsis in 8 non-survivors (black triangles), 16 sepsis survivors (black squares), and 6 sham animals (open
circles). Baseline refers to the timepoint 15 min after slurry injection in septic animals (or 15 min after end
of instrumentation in sham animals). Symbols indicate means (SEM). Significant group differences (p < 0.05):
*sham versus non-survivors, $ sham versus survivors, £ survivors versus non-survivors. Data of non-survivors
were only displayed until 12 h, to avoid a selection bias due to mortality
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blood cultures, while post-mortem examination demonstrates generalized peritonitis

and ascites formation. Injection of fecal slurry allows an identical insult in a batch of

animals while avoiding a laparotomy reduces surgical trauma and postoperative pain.

Fig. 5 Heart rate variability in septic animals. Baseline refers to the timepoint 15 min after slurry injection in
septic animals (or 15 min after end of instrumentation in sham animals). In the top figure, temporal
changes of the standard deviation (SD) of normal-to-normal (NN) inter-beat intervals are depicted. Total
power (TP) is shown in the middle figure. Both represent global parameters of HRV. The bottom figure
shows the ratio between low frequency (LF) and high frequency (HF), reflecting the relationship between
sympathetic and parasympathetic activity. Symbols indicate means (SEM). Eight non-survivors (black
triangles), 16 survivors (black squares), and 6 sham animals (open circles).Significant group differences (p < 0.05):
*sham versus non-survivors, £ survivors versus non-survivors
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Septic animals developed an early tachycardia that progressed, especially in eventual

non-survivors, notwithstanding aggressive intravenous fluid resuscitation commencing

from 4 h. Mechanisms such as sympathetic overstimulation are likely present, despite

the use of continuous opioid analgesia to manage pain. Afferent fibers in the periphery

can sense inflammation and directly activate autonomic centers within the brainstem

[15]. This could be particularly important with peritonitis as the region around the ce-

liac axis has a rich supply of sympathetic afferents [15].

The prognostic finding of tachycardia mirrors findings from patients with both

non-septic [16] and septic [17–20] conditions. In our current study, an increase in

heart rate ≥50 bpm during the first hours of sepsis strongly prognosticated a poor out-

come. Our data support the hypothesis that outcome is determined at an early stage

[21]. In our model, using an identical insult in animals of similar genotype, age, sex and

upbringing, this was true even before commencement of fluid resuscitation and antibi-

otics. Hence, predicted non-survivors did not benefit from these standards of care,

highlighting the need for new therapeutic concepts to improve survival in this group.

The risk for predicted survivors is harm from additional interventions [22]; this may re-

sult in no overall benefit for the sepsis population as a whole.

Table 2 Prognosticators of death in septic animals

Physiological variables ROC AUC 95% CI p value

HR at 4 h (n = 24) 0.664 0.409–0.919 0.198

HR at 6 h (n = 23) 0.732 0.507–0.957 0.082

HR change between baseline and 4 h (n = 24) 0.875 0.684–1.00 0.003

HR change between baseline and 6 h (n = 23) 0.879 0.681–1.00 0.005

AUC area under the curve, CI confidence interval, h hours, HR heart rate, ROC receiver operator characteristic. By 6 h, one
septic animal had died and could not be used for ROC calculations

Table 3 Parameters at 4 h and their potential to discriminate between potential survivors and
non-survivors

Parameter ROC AUC 95% CI p value Threshold Sensitivity% 95% CI Specificity% 95% CI

Hct (%) 0.93 0.779–1.0 0.008 < 43.5 100 72–100% 80 28–99%

Temperature (°C) 0.57 0.166–0.968 0.673 > 38.0 60 15–95% 83 52–98%

Lactate (mmol/L) 0.68 0.319–1.0 0.257 > 1.49 60 15–95% 100 72–100%

Base excess 0.56 0.264–0.863 0.692 < 2.20 80 28–99% 45 17–77%

pH 0.59 0.266–0.916 0.571 > 7.43 40 5–85% 82 48–98%

Glucose 0.80 0.554–1.0 0.066 > 15.5 60 15–95% 90 56–100%

IL-1a (pg/ml) 0.58 0.237–0.926 0.610 > 57.2 40 5–85% 91 59–100%

IL-1b (pg/ml) 0.56 0.194–0.933 0.692 > 244 60 15–95% 82 48–98%

IL-6 (pg/ml) 0.67 0.326–1.0 0.282 > 2775 60 15–95% 91 59–100%

IL-10 (pg/ml) 0.60 0.217–0.983 0.533 > 538 60 15–95% 91 59–100%

TNF-α (pg/ml) 0.51 0.168–0.850 0.955 < 61 40 5–85% 82 48–98%

CXCL-1 (pg/ml) 0.69 0.349–1.0 0.234 > 1885 80 28–99% 82 48–98%

MCP-1 (pg/ml) 0.56 0.211–0.916 0.692 > 7.4 60 15–95% 82 48–98%

MIP-1 (pg/ml) 0.82 0.604–1.0 0.047 > 211 60 15–95% 91 59–100%

BNP (pg/ml) 0.76 0.521–1.0 0.101 < 0.15 60 15–95% 82 48–98%

Animals were sacrificed at 4 h prior to fluid resuscitation and categorized according to their heart rate changes from
baseline (≥ 50 bpm = predicted non-survivors; < 50 bpm = predicted survivors). This cut-off was determined from 48 h
mortality experiments (see main manuscript for details). CI confidence interval, ROC AUC area under the receiver operator
characteristics curve
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Tachycardia persisted in non-survivors despite aggressive fluid resuscitation suggesting

that tachycardia was not only a result of insufficient preload, but likely also a sign of auto-

nomic dysfunction. Significant differences in HRV were found between groups, suggesting

autonomic dysfunction in septic animals, particularly in the non-survivors. The ratio

between low frequency (LF) and high frequency (HF) heart rate variations was signifi-

cantly decreased in non-survivors. While parasympathetic tone (HF variation of heart

rate) dominates over sympathetic tone (LF variation) under physiological conditions, LF/

HF variability could be lost during critical illness. As described in patients with sepsis [23]

and heart failure [24], autonomic regulatory dysfunction can lead to a low LF/HF ratio

despite a high level of sympathetic activation. In agreement with our preclinical study, a

low LF/HF ratio was associated with an increased risk of death in septic patients [25–27].

Our results are also comparable to sepsis studies in rodents [28, 29] and humans [30], in

which similar results of reduced HRV have been observed. The interruption of specific

feedback mechanisms between the autonomic nervous system and the heart is termed un-

coupling of the components [31]; autonomic dysfunction may thus represent a potential

mechanism resulting in death. Further clinical studies on heart rate and heart rate vari-

ability in septic patients are needed to better discriminate between compensatory tachy-

cardia (adaptive) and non-compensatory tachycardia (maladaptive), and to understand

when tachycardia should be treated with beta-blocking agents.

The stability of gas exchange and metabolic acidaemia at the 24 h timepoint suggest

that respiratory failure or renal dysfunction is not directly responsible for mortality in

this model. The absence of elevated troponin levels suggests that myocardial injury was

also not a hallmark. However, elevation in BNP at this timepoint is indicative of myo-

cardial dysfunction and mirrors clinical findings in patients with established sepsis, par-

ticularly in those with a poor prognosis [32–35]. This finding implies heart failure may

be an important mechanism underlying death.

Mean cytokine levels were non-significantly higher in predicted non-survivors, albeit

with high variability. Cytokine levels had normalized by 24 h in survivors, which con-

current with features of clinical recovery of signs. A similar pattern was reported by

Recknagel et al. in their rat model of polymicrobial sepsis [36].

Limitations of the study

We cannot report on circulating catecholamine levels, as this model does not allow re-

petitive and/or non-stressful blood sampling in awake animals. The 4 and 24 h blood

samples were collected after prior surgical exposure of the carotid artery, which would

invalidate catecholamine measurements at these particular timepoints.

All animals received the same fluid protocol. As shown in Table 1, predicted sepsis

non-survivors had an increased hematocrit compared to sepsis survivors and sham

animals, which may indicate intravascular hypovolemia. However, administration of lar-

ger amounts of intravenous fluids could be harmful for potential survivors and sham

animals [5]. Fluid administration titrated to physiological parameters might offer fur-

ther improvement of the model. However, heart rate alone is not useful to guide fluid

resuscitation, as non-compensatory tachycardia can persist after fluid resuscitation [5].

HRV is influenced by heart rate [37] and respiration rate [38], which both changed

substantially in septic rats, particularly in the non-survivors. We did not perform any
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intervention to directly test whether the recorded frequency bands (LF or HF) correlate

with sympathetic and parasympathetic responses in our model. Furthermore, there was

no recovery period between telemetry implantation and baseline measurements. While

surgery and anesthesia have likely influenced heart rate and heart rate variability, this

would affect all experimental groups. Potentially, the differences found in our study

could be even more pronounced if there was a recovery phase between telemetry

implantation and induction of peritonitis. However, a recovery phase would also in-

crease the risk of wound infections or adverse effects of empirical antibiotic therapy

that could also affect the results of the study.

Conclusions
We describe a fluid-resuscitated rat model of abdominal sepsis with a representative

sepsis phenotype and long-term mortality. This model represents not only an alternative

to the standard mouse CLP model, but one more representative of human sepsis with

respect to physiological, metabolic, and transcriptome changes [39, 40]. Telemetry-moni-

tored changes in heart rate as early as 4 h after the septic insult predicted death with good

sensitivity and specificity. Previous studies have demonstrated that autonomic dysfunction

occurs during sepsis. The HRV analysis of this study supports this finding, but the results

must be interpreted with care due to several limitations. Whether autonomic dysfunction

during sepsis is a mechanism leading to death requires further mechanistic studies with a

special focus on HRV. Further investigations of adaptive changes in potential survivors

and mechanisms of death in potential non-survivors are possible with this model. It will

also allow testing of novel treatment to assess their beneficial and harmful effects in pre-

dicted sepsis non-survivors and survivors.
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