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Abstract

Background: Positive pressure ventilation can decrease venous return and cardiac
output. It is not known if expiratory ventilation assistance (EVA) through a small
endotracheal tube can improve venous return and cardiac output.

Results: In a porcine model, switching from conventional positive pressure
ventilation to (EVA) with − 8 cmH20 expiratory pressure increased the venous
return and cardiac output. The stroke volume increased by 27% when the
subjects were switched from conventional ventilation to EVA [53.8 ± 7.7 (SD) vs.
68.1 ± 7.7 ml, p = 0.003]. After hemorrhage, subjects treated with EVA had higher
median cardiac output, higher mean systemic arterial pressure, and lower central
venous pressure at 40 and 60 min when compared with subjects treated with
conventional ventilation with PEEP 0 cmH20. The median cardiac output was 41%
higher in the EVA group than the control group at 60 min [2.70 vs. 1.59 L/min,
p = 0.029].

Conclusion: EVA through a small endotracheal tube increased venous return, cardiac
output, and mean arterial pressure compared with conventional positive pressure
ventilation. The effects were most significant during hypovolemia from hemorrhage.
EVA provided less effective ventilation than conventional positive pressure ventilation.

Keywords: Cardiac output, Venous return, Negative pressure ventilation, Hemorrhage,
Expiratory ventilation assistance

Background
Positive pressure ventilation can reduce cardiac output by impeding venous return to the

heart. The most significant reduction occurs in hypovolemic patients, especially if the venti-

lator maintains positive pressure during both inspiration and exhalation [1–4]. Conversely,

negative pressure ventilation can improve cardiac output by reducing intrathoracic pressure

and increasing the pressure gradient for venous return to the heart [5–7]. Alternating posi-

tive pressure inspiration with negative pressure during exhalation increases cardiac output

when compared with strategies using positive end-expiratory pressure (PEEP) [6, 8–10]. In

laboratory models of hemorrhage shock, negative pressure ventilation can restore cardiac

output [9, 11]. These findings suggest a possible benefit of negative expiratory pressure as

part of the initial management of patients with hemorrhagic shock who require mechanical

ventilation. However, there are some potential problems with this approach. First, negative
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intrathoracic pressure can collapse the great veins and limit venous return [7]. Additionally,

negative intrathoracic pressure may increase the risk of pulmonary edema or atelectasis

[12–14]. Finally, it is unclear how the variety of different negative pressure techniques differs

from one another. Therefore, more information is needed on the effects of negative pressure

exhalation strategies in hemorrhagic shock.

Recently, a mechanical ventilation device that creates negative intratracheal pressure

during exhalation became available (Ventrain, Ventinova Medical BV, Eindhoven, NL).

Ventrain uses positive pressure during inspiration, and a technique called expiratory ven-

tilation assistance (EVA) during exhalation. By increasing the efficiency of ventilation,

EVA enables the use of an extremely narrow endotracheal catheter. The current indica-

tion for this hand-held device is for rescue transtracheal ventilation in a “can’t intubate

and can’t ventilate” situation. During inspiration, gas flows through the Ventrain and then

into the endotracheal catheter. During exhalation, gas flow through the Ventrain is

diverted out a narrowed side port. The diversion creates a Venturi effect—the air pressure

in the Ventrain decreases as gas accelerates through the narrowed side port. The lower

pressure in the Ventrain facilitates expiratory flow out the endotracheal catheter. With the

original hand-held Ventrain, the operator manually controls the duration of inspiration

and exhalation [15, 16]. A newly automated modification of Ventrain controls the timing

and pressure targets during inspiration and exhalation. The automated device interfaces

with a new catheter (Tritube Fig. 1) that has a distal cuff for inflation as well as lumens

Fig. 1 The Tritube used for expiratory ventilation assistance has three ports on the proximal end. An
example of the pressure-time tracing from the airway is shown at the bottom. The end-expiratory pressure
has been set to 0 cmH2O
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for side-stream capnography and pressure monitoring. It is unknown if a reduction of the

expiratory pressure in the trachea with an EVA system can reduce intrathoracic pressure

sufficiently to restore hemodynamics.

The purpose of this study was to determine whether EVA through a small endo-

tracheal tube could improve cardiac output, venous return, and mean arterial pressure

compared with conventional mechanical ventilation. To answer this question, we used

a porcine model of hemorrhage and resuscitation. The study also compared the effects

of the two ventilation strategies on gas exchange.

Methods
The study was performed along with another study comparing cardiac output monitors

in hemorrhagic shock, which has been previously reported [17].

Experimental preparation

Eight Yorkshire swine (46–55 kg) were sedated with tiletamine/zolazepam/xylazine and

initially anesthetized with isoflurane by nose cone. The trachea was intubated with an

8.0 cuffed endotracheal tube and anesthesia converted to propofol/fentanyl/midazolam

infusion and rocuronium. Bipolar electroencephalogram (Cerebral State Monitor; Dan-

meter, Odense, Denmark) was used to monitor the depth of anesthesia. Baseline con-

ventional positive pressure ventilation (volume control) was initiated with a tidal

volume of 9 cm3/kg, a rate of 12–13, positive end-expiratory pressure (PEEP) of

4 cmH2O, and a fraction of inspired oxygen (FiO2) of 0.4. A catheter with a ~ 4 cmH2O

inflatable cuff was positioned in the mid-esophagus to estimate trends in intrathoracic

pressure. The zero reference was the pressure within the cuff during a period of apnea

with the endotracheal tube open to atmospheric pressure. The femoral arteries and

veins were percutaneously cannulated with 9 Fr. vascular sheaths for hemodynamic

monitoring. One venous sheath was used for placement of a pulmonary artery catheter

to measure PA and central venous pressures as well as serial cardiac output by bolus

thermodilution (the average of three injections of 10 cm3 0.9% NaCl at room

temperature). The other venous sheath was used for drug and fluid administration. Ar-

terial blood was withdrawn from one arterial sheath and the systemic arterial pressure

measured from the side-arm of the other. Via one arterial sheath, a 5 Fr. conductance/

micromanometer catheter was advanced into the left ventricle. The parallel conduct-

ance of the system was determined by injection of hypertonic saline, and bolus thermo-

dilution served as the reference for calibration of stroke volume. To provide

continuous assessment of cardiac output and intrathoracic fluid content, surface sen-

sors for bioreactance monitoring (NICOM, Cheetah Medical Inc. Portland, USA) were

placed across the chest. A heating blanket maintained body temperature, and lactated

Ringers solution infused at 2 cm3/kg/h. All data were time stamped and continuously

recorded in digital format by LabChart (ADInstruments, New South Wales, Australia)

and the NICOM monitor.

EVA ventilation

After instrumentation and stabilization, a trial of EVA using a 4.4 mm outer diameter,

cuffed intratracheal catheter (Tritube) was performed to assure proper function of the
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system and determine hemodynamic effects in normovolemia in six of the subjects.

The Tritube has three lumens: a 2.3 mm internal diameter lumen for ventilation, a dis-

tal port for monitoring intratracheal pressure, and a lumen for inflation/deflation of the

cuff (Fig. 1). The Tritube was inserted through the endotracheal tube and the distal tip

positioned above the tracheal origin of the right upper (cranial) lobe bronchus with

bronchoscopic guidance. The Tritube was marked to assure equal depth of placement

each time, and the inflated cuff created a closed system. Ventilation was initiated with

an automated Ventrain device. During inspiration, the device delivers a constant rate of

gas flow until the pressure measured at the end of the Tritube reaches a limit set by

the user. The user also sets the ratio of inspiratory to expiratory times and the desired

level of end-expiratory pressure. The EVA ventilator assists expiratory flow by produ-

cing a linear decline in intratracheal pressure until reaching the target end-expiratory

pressure (Fig. 1). To confirm that the desired levels of negative end-expiratory pressure

could be achieved, the target was progressively reduced from + 4 to − 8 cmH2O with

minute ventilation kept constant. Each step lasted for ~ 8 min with FiO2 of 1.0, and ar-

terial blood gases measured. Afterward, the Tritube was removed, and conventional

positive pressure ventilation with 4 cmH20 PEEP resumed.

Hemorrhage and ventilation

During conventional positive pressure ventilation, 40 ml/kg of blood was withdrawn

from all eight subjects into heparinized bags over 30 min. Half the subjects continued

on conventional positive pressure ventilation (9 cm3/kg, rate 12–13) with 0 cmH20

PEEP, FiO2 1.0. The other four subjects were placed on EVA after reinsertion of the

Tritube. In the four subjects on EVA, the end-expiratory pressure was progressively re-

duced over 10 min to − 8 cmH2O. One of the four EVA subjects had the

end-expiratory pressure reduced to − 10 cmH20. During EVA, FiO2 was kept at 1.0 and

minute ventilation was adjusted by varying the peak inspiratory pressure, inspiratory

flow rate, and the inspiratory to expiratory ratio. EVA was adjusted to continue the

same minute ventilation used during conventional ventilation. Arterial blood gas ana-

lysis was performed at baseline (pre-hemorrhage), the end of hemorrhage (0 time, dur-

ing conventional ventilation for both groups), and then at 20-min intervals during

shock. After 60 min, all subjects underwent a 20-min resuscitation with a combination

of shed blood and 5 cm3/kg of warmed lactated Ringers solution. Following resuscita-

tion, the Tritube was removed in those receiving ventilation with EVA. For all animals,

a recruitment maneuver of 40 cmH20 for 10 s was performed, and conventional posi-

tive pressure ventilation with 4 cmH20 PEEP and FiO2 0.40 continued for another

90 min. Upon conclusion of the protocol, animals were euthanized with intravenous

potassium chloride while deeply anesthetized.

Hemodynamic data recording and analysis

For each subject, the average values for continuous beat-to-beat hemodynamic and

breath-to-breath ventilation measurements over three respiratory cycles at each time

point were determined, and these data then used along with intermittent bolus thermo-

dilution cardiac output measurements for analysis of pooled data. Measurements across

time and treatment within each group were assessed for normality of distribution
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(Shapiro-Wilk test) and then compared by analysis of variance for repeated measures

and the Bonferroni post-hoc test where appropriate. Measurements made during shock

and resuscitation were compared independently of those obtained pre-hemorrhage and

at 30, 60, and 90 min after resuscitation. This was done to prevent bias of repeated

measures analysis by lumping data from the markedly different normovolemic and

hypovolemic conditions. Intergroup data (conventional ventilation vs. EVA) at each

time point were compared by t test. For all analyses, p < 0.05 was considered significant.

Data are presented as mean + SD.

Results
Table 1(a) shows the hemodynamic effects before hemorrhage of switching from con-

ventional ventilation with PEEP + 4 cmH2O to EVA and then progressively reducing

the expiratory pressure to − 8 cmH2O. The stroke volume increased by 27% when the

subjects switched from conventional ventilation to EVA [53.8 ± 7.7 (SD) vs. 68.1 ±

7.7 ml, p = 0.003]. Similarly, the cardiac output increased by 21% [3.53 ± 0.46 (SD) vs.

4.26 ± 0.27 ml, p = 0.023]. Additionally, when switched from conventional ventilation to

EVA, the central venous pressure fell significantly [6.0 ± 2.0 (SD) vs. 4.2 ± 2.5 mmHg, p

= 0.013]. There was also a trend toward an increase in left ventricular end-diastolic vol-

ume, although this did not reach statistical significance. The progressive hemodynamic

changes associated with the stepwise reduction in expiratory pressure during EVA in a

single subject are displayed graphically in Fig. 2. As expiratory pressure was reduced

from + 4 to − 8 cmH20, the central venous pressure fell while the left ventricular vol-

ume and cardiac output rose.

Table 1(b) shows the gas exchange response to EVA before hemorrhage. EVA resulted

in a lower peak inspiratory pressure compared with the baseline condition of conven-

tional positive pressure ventilation with PEEP 4 cmH2O. The PCO2 was higher during

EVA than during conventional ventilation. The right to left shunt fraction, as estimated

by the ratio of PaO2 to FiO2, did not change significantly when switching to EVA [18].

Figure 3 shows the hemodynamic response to EVA after hemorrhage. Compared with

conventional ventilation with PEEP 0cmH20, subjects treated with EVA of − 6 and − 8

had higher median cardiac output, higher mean systemic arterial pressure, and lower

central venous pressure at 40 and 60 min. The median cardiac output was 41% higher

in the EVA group than the control group at 60 min [2.70 vs. 1.59 L/min, p = 0.029].

During resuscitation, there were no significant hemodynamic differences between the

two groups. Figure 4 shows the effect of EVA during hypovolemia in a representative

subject. With a stepwise reduction in expiratory pressure, there was a progressive fall

in airway pressure, central venous pressure, and pulmonary artery pressure. However,

there was a simultaneous progressive increase in left ventricular and mean systemic

pressure.

Figure 5 demonstrates in a single subject the effect of EVA on esophageal pressure,

which is a surrogate for intrathoracic pressure. The figure suggests that reducing the

end-expiratory tracheal pressure with EVA reduces intrathoracic pressure. Figure 6

shows an approximation of the transmural pressure of the left ventricle obtained during

progressively lower end-expiratory pressures. The transmural pressure was calculated

by subtracting the esophageal pressure from the end-diastolic pressure. The increased

end-diastolic transmural pressure of the left ventricle was associated with an increase
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in thoracic fluid content and stroke volume measured by bioreactance. Thoracic fluid

content is a surrogate for cardiac preload.

Figure 7 displays the effect of EVA on the left ventricular pressure-volume relation-

ship in a representative subject. The left side of the panel shows that a lower expiratory

pressure was associated with an increased end-diastolic volume of the left ventricle and

an increase in stroke volume and myocardial work. The right side of the panel uses the

estimated transmural pressure of the left ventricle for the y-axis of the pressure-volume

relationship. The figure suggests that the wall tension of the left ventricle increased

with negative expiratory pressure.

Discussion
This study showed that EVA through a small endotracheal tube increased stroke

volume, cardiac output, and mean arterial pressure compared with conventional

ventilation. The hemodynamic effects of EVA were most significant in the hypovol-

emic state after hemorrhage. This study provides additional support for Guyton’s

venous return model of the circulation, which asserts that the gradient between

the systemic veins and the right atrium powers the return of blood to the heart.

The model predicts that negative intrathoracic pressure reduces the absolute right

atrial pressure and increases the filling of the right heart. In this scenario, the

Fig. 2 Hemodynamic variables during expiratory ventilation assistance in a normovolemic subject. The end-
expiratory pressure (EEP) is decreased over time
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lower right atrial pressure is matched by an increase in its transmural pressure.

This increase in the venous return can increase the left ventricular end-diastolic

volume, which can increase stroke volume [5–7, 19]. Several lines of evidence from

this report suggest that EVA increased stroke volume by increasing the pressure

gradient for venous return. First, the esophageal probe waveforms demonstrate that

EVA was able to reduce intrathoracic pressure. Second, EVA reduced absolute right

atrial pressure. Third, left ventricular end-diastolic volume and thoracic fluid con-

tent increased as the intrathoracic and intra-cardiac pressures decreased. Fourth,

the increase in stroke volume and left ventricular end-diastolic volume were pro-

portional to the decrease in expiratory pressure. Finally, it is unlikely that any fac-

tor other than an increase in preload improved the stroke volume. EVA did not

improve either contractility or decrease left ventricular afterload. While we were

not able to measure end-systolic elastance, a surrogate marker of contractility (dP/

dt) did not increase. Moreover, the transmural wall tension (afterload) increased

with negative pressure exhalation.

Fig. 3 Comparison of expiratory ventilation assistance and conventional ventilation in hypovolemia. All
subjects began hemorrhage on conventional ventilation with PEEP 4 cmH20. After completing hemorrhage
(time 0 min), the EVA group underwent ventilation with progressively negative end-expiratory pressure. The
conventional ventilation group had PEEP 0 cmH20. The solid red and dashed black lines are plots of the
median values. The raw data from each of the eight subjects appear in the background. Resuscitation
began after measurements at time 60 min
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Fig. 4 Example of hemodynamic variables during expiratory ventilation assistance in a hypovolemic subject.
The end-expiratory pressure (EEP) progressively decreases over time. The cardiac output (CO) increases as
end-expiratory pressure decreases

Fig. 5 Example of the effect of expiratory ventilation assistance on esophageal pressure
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Fig. 6 Example of the dose-response of negative end-expiratory pressure on indices of left ventricular filling
and ejection. The top panel displays changes in thoracic fluid content and stroke volume measured by
bioreactance. The bottom panel shows the change in measured and transmural left-ventricular end diastolic
pressure (EDP) as the expiratory pressure decreases. Ventricular pressures were normalized to their baseline
values. This demonstrates that while measured EDP declined slightly, transmural EDP increased
nearly sixfold

Fig. 7 Pressure-volume loops from one subject during expiratory ventilation assistance (EVA). The left panel
shows a decrease in measured left ventricular end diastolic pressure (gray circles) as expiratory pressure
decreases. The right panel shows the same data, but with an estimate of transmural left ventricle pressure
on the Y-axis. This demonstrates that negative expiratory pressure with EVA increases left ventricular
wall tension
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This study may have underestimated the potential ability of EVA to improve ven-

ous return compared with conventional ventilation during hemorrhagic shock. In

clinical practice, conventional ventilation typically uses PEEP, which can diminish

the gradient for venous return. In fact, PEEP is fatal in porcine hemorrhagic shock

[20]. Therefore, the control arm in this study used an expiratory pressure of

0 cmH20 rather than PEEP.

This study is a preliminary evaluation of a newly automated ventilation device. The-

oretically, a clinical application for EVA might be for temporary use during

hemorrhagic shock before resuscitation. If technical improvements allow, a clinician

could quickly place the Tritube catheter into an endotracheal tube and temporarily use

EVA. As soon as hemodynamic crisis resolves or the patient begins to make spontan-

eous breathing efforts, the catheter could be removed, and conventional ventilation re-

sumed. However, it is essential to consider that despite the compelling physiologic

rationale, other negative pressure ventilation strategies were not efficacious in clinical

trials [21].

While this study focused on hemorrhage, there is a theoretical benefit of EVA in

other hemodynamic states that would benefit from a temporary increase in venous re-

turn. Other negative pressure devices have increased cardiac output in patients with

Fontan physiology, cardiac tamponade, and cardiopulmonary resuscitation [22–24].

Moreover, by decreasing intrathoracic pressure, other negative pressure devices have

increased cerebral drainage and increased cerebral perfusion [24, 25]. The increase in

venous return and cerebral perfusion pressure are theoretical advantages for using EVA

as a transtracheal rescue ventilation system during cardiopulmonary resuscitation. Con-

versely, it may be problematic to use EVA as a ventilator strategy during airway surgery

in patients with congestive heart failure. These patients are less likely to tolerate in-

creases in preload and left ventricular afterload from EVA.

A significant limitation of the automated EVA system is the potential for obstruction

of the thin catheter, which occurred twice during our experiments. A system for flush-

ing the catheter would be helpful. Moreover, a larger diameter endotracheal tube could

prevent obstruction. A larger tube might also improve CO2 clearance, which is signifi-

cant because EVA is less effective at ventilation than the conventional strategies. Dead

space, as estimated by minute ventilation and PCO2, rose slightly upon initiation of

EVA. Previous investigations have also shown that EVA is more efficient at oxygenation

than carbon dioxide clearance [15].

Aside from the specific limitations of EVA, there are two crucial problems of negative

pressure exhalation in general. First, negative pressure exhalation may increase the risk

of pulmonary edema in susceptible hosts. This study shows that EVA increases left ven-

tricular preload and may increase left ventricular wall tension. Second, EVA may lead

to atelectasis and ventilator-induced lung injury. Negative intrathoracic pressure could

lead to atelectrauma and cyclic shear. While short-term extrathoracic negative pressure

may be safe, the effects of EVA on the lung are unknown [26, 27]. Moreover, it is un-

clear how low the expiratory pressure should be set with EVA. In prior studies of nega-

tive pressure ventilation during hypovolemia, venous return increased with a decrease

in intrathoracic pressure as great as − 10 cmH20. [28]

EVA differs from other negative pressure strategies such as the extrathoracic cuirass venti-

lator. Unlike EVA, the cuirass expands the thorax, which creates negative intrathoracic
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pressure to assist inspiration. EVA and other Venturi-assisted ventilators apply negative

pressure to the airway to assist exhalation [9, 11]. It is likely that the different types of nega-

tive pressure ventilators have different clinical and physiologic effects.

There are some technical limitations of this study. First, this pilot study used a small

sample size. Additionally, the esophageal pressures are only surrogates for pleural and

intrathoracic pressure. The esophageal pressure is useful for trending, but absolute

values are unreliable [29]. Therefore, our calculations of transmural pressure are just

estimates. Another limitation is the unreliability of the left ventricular conductance

catheter during severe hypovolemia. We were not able to obtain reliable left ventricular

volume measurements during hemorrhage for all subjects due to catheter movement

and signal artifact produced by turbulent flow.

Conclusion
EVA through a small endotracheal tube increased venous return, cardiac output, and

mean arterial pressure compared with conventional positive pressure ventilation. The

effects were most significant during hypovolemia from hemorrhage. EVA provided less

effective ventilation than conventional positive pressure ventilation.
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