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Abstract

Background: In addition to the risk of developing ventilator-induced lung injury,
patients with ARDS are at risk of developing hyperoxic injury due the supra-physiological
oxygen supplementation clinically required to reverse hypoxemia. Alterations of
endogenous surfactant system participate in the pulmonary dysfunction observed in
ARDS. Administration of exogenous surfactant could have protective effects during
hyperoxia.

Methods: Male BALB/c mice (8–10weeks), a strain highly sensitive to hyperoxia, received
the exogenous surfactant-containing protein SP-B and SP-C by intranasal instillation 12 h
before starting 24 h of exposure to hyperoxia in an inhalation chamber and were
compared to mice receiving hyperoxia alone and to controls subjected to normoxia.

Results: Compared to the hyperoxia group, the administration of exogenous surfactant
was able to reduce lung inflammation through a reduction in the influx of neutrophils
and inflammatory biomarkers such as TNF, IL-17, and HMGB1 expression. The antioxidant
activity prevented oxidative damage by reducing lipid peroxidation and protein
carbonylation and increasing superoxide dismutase activity when compared to
the hyperoxia group.

Conclusion: Our results offer new perspectives on the effects and the mechanism of
exogenous surfactant in protecting the airway and lungs, in oxygen-rich lung
microenvironment, against oxidative damage and aggravation of acute inflammation
induced by hyperoxia.

Keywords: ARDS, BALB/c mice, Exogenous surfactant, Hyperoxia, Lung injury, Oxidative
stress

Background
Studies have shown that alterations of the endogenous surfactant system contribute to

pulmonary dysfunction and atelectasis in ARDS [1]. These alterations include decrease

of pool size and functional modifications of endogenous surfactant. Mechanical venti-

lation by itself can lead to the oxidation of surfactant components [1]. A meta-analysis

of studies in adult patients with ARDS showed that exogenous surfactant (ES) adminis-

tration may improve oxygenation in the first 24 h but does not mitigate mortality and

long-term oxygenation (> 120 h) [2]. Important concerns have been raised, however, re-

garding the practical administration of surfactant and its ability to reach the alveoli [3].
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Recently, our research team showed that ES administration decreased oxidative stress

in the lungs of mice exposed to cigarette smoke [4].

Hyperoxia can promote changes in the function of surfactant subtypes [5] and is able

to induce inflammation and oxidative stress [6]. In humans, an administration of high

concentrations of oxygen has shown that the lung is susceptible to oxygen toxicity after

breathing pure oxygen for only 17 h [7]. Several studies have demonstrated a higher risk

of mortality in patients treated with high concentrations of oxygen, but the mecha-

nisms are unclear [8–11]. Several studies using knock-out mice showed that deficien-

cies in several surfactant proteins (SP-A, SP-B, SP-C, and SP-D) result in higher

inflammation induced by hyperoxia [12–14] and upregulation of cytokines, such as the

high mobility group box protein 1 (HMGB1) [15]—a pro-inflammatory cytokine

expressed by lung epithelial and endothelial cells and alveolar macrophages [16], and

which attracts neutrophils, releases cytokines as TNFα, and inhibits macrophages mi-

gration [17]. SP-D can also inhibit the secretion of TNF, IFNγ, and IL-6 [18]; decreases

peroxidation of surfactant lipid mixtures [19]; and reduces recruitment of inflammatory

cells to lungs after infection [20], while SP-A inhibits IL-10 production and decreases

recruitment of macrophages [21]. It has been shown that the inhibition of extracellular

HMGB1 attenuated hyperoxia-induced inflammatory acute lung injury followed by re-

duction of leukocyte and polymorphonuclear cells [16], while other experimental

models confirm that the depletion of HMGB1 reduces acute lung injury [22, 23]. None

of these experimental models, however, was originally designed to investigate in vivo

the combined effects of surfactant on hyperoxia-induced inflammation.

This study evaluated the effect of exogenous surfactant administration to prevent

hyperoxic acute lung injury in BALB/c adult mice. This mice strain was used due to its

sensitivity to hyperoxia [6].

Methods
Animals

Male BALB/c mice (8–10 weeks, 20–25 g) were purchased from the Animal Science

Center (ASC) of the Federal University of Ouro Preto (Ouro Preto, MG, Brazil) in a

controlled-environment with cycled lighting (12 h light/12 h dark, lights on at 6:00

PM), with controlled temperature (21–22± 2 °C) and relative humidity (50 ± 10%). The

animals received food and water ad libitum. The experimental design was approved by

the Ethics Committee for Animal Research of UFOP (No. 2015/14).

The animals were divided into four groups: Control group (CG)—control mouse was

exposed to normoxia in air room. Surfactant group (SG)—mice were challenged with

ES by intranasal instillation 12 h before hyperoxia. Hyperoxia group (HG)—the animals

were exposed to 100% oxygen in a chamber for 24 h. Hyperoxia-surfactant group

(HSG)—mice were challenged with ES by intranasal instillation 12 h before hyperoxia

followed by exposure to 100% oxygen in a chamber for 24 h.

Hyperoxia protocol

A cylinder containing 8000 L (180 Kgf/cm2, White Martins, Praxair Inc., São Paulo,

Brazil) medical O2 was coupled to the Bourdon tube and the Thorpe tube (0–15 L /

min.). A silicone conduit was connected to the Thorpe tube and the oxygen inhalation
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chamber (20x15x30cm), as described previously [6]. At the end of the oxygen exposure,

the animals were euthanized by an overdose of ketamine (130 mg/kg) and xylazine (0.3

mg/kg).

Surfactant administration

The ES (The CUROSURF brand surfactant (Chiesi Farmaceutici S.p.A., Parma, Italy)

was administered by intranasal instillation 12 h before exposure to hyperoxia in only

one dose of 2.0 mL/kg/day (50 μL) [4].

Bronchoalveolar lavage fluid

The thorax of each animal was opened for collection of the bronchoalveolar lavage fluid

(BALF). The left lung was clamped, the trachea was cannulated and the right lung was

washed with 3 × 500 μL of saline solution. A 250 μL/sample was centrifuged at 1000

rpm for 1 min (cytospin technique—g Force). The total count of cells in the BALF was

performed using a Neubauer chamber and the differential count using Panotic stained

with Fast (Laborclin, Paraná, BR). The identification of inflammatory cells and differen-

tial counts was performed on slides by light microscopy [24].

Tissue processing and homogenization

After BALF collection, the right ventricle of each animal was perfused with saline to re-

move blood from the lungs. The right lung was clamped so that only the left lung was

perfused with buffered 4% formalin (pH 7.2) via the trachea. The material was then

processed and stained with hematoxylin and eosin for histological analysis. The right

lung was removed and stored in labeled tubes. Afterwards, the right lung was homoge-

nized in phosphate buffer (pH 7.5) and centrifuged at 10.000 rpm for 10min. Super-

natant was collected, and the samples were stored (− 80 °C) for biochemical analyses.

Immunoassays for inflammatory markers in BALF

BALF were used for the analyses of TNF, IL-17, and CCL5. Immunoassays (Peprotech

kits, Ribeirão Preto, Brazil) were performed in 96-well plates on which 100 μl of mono-

clonal antibody to the protein (or peptide) of interest was added and samples were di-

luted in PBS containing 0.1% bovine serum albumin-BSA (Sigma-Aldrich, St Louis,

MO). After incubation for 12 h at room temperature, the plates were blocked with

300 μl/well of a PBS solution containing 1% BSA for 1 h at 37 °C. Samples were applied

in a volume of 25 μl to each well. The reaction was read on ELISA reader at 490 nm.

Antioxidant enzymes and biomarkers of oxidative damage

All chemicals were purchased from Sigma-Aldrich Chemical Co., (Sigma-Aldrich Inc.,

St. Louis, MO, USA). All measurements described below were performed on lung ho-

mogenates using a spectrophotometer (Beckman model DU 640; Fullerton, CA) or a

microplate reader (Bio-Rad model 550, Hercules, CA). Catalase (CAT) activity was cal-

culated from the rate of decrease in the concentration of hydrogen peroxide (U/mg

protein), which was determined from the absorbance at 240 nm. The SOD activity was

measured according to the Marklund method [25] which is based on the ability of the

enzyme to inhibit the auto-oxidation of pyrogallol. Absorbances were read on ELISA
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reader at a wavelength of 570 nm. The oxidative damage was determined by levels of

malondialdehyde (MDA) measured during an acid-heating reaction with thiobarbituric

acid and was determined from the absorbance at 535 nm (described by Buege et al.)

[26]. The carbonylation of proteins was performed (according to Levine et al. [27]).

The total protein analysis was performed by the Bradford method [28].

Morphometric stereological analysis

The volume density analyses of the alveolar septum (Vv [sa]) and the alveolar spaces

(Vv [a]) were performed in a test system composed of 16 points and a known test area.

The test system was coupled to a monitor attached to a microscope. The number of

points (Pp) that reached the alveolar septa (Vv [sa]) and the alveolar spaces (Vv [a])

were evaluated according to the total number of points in a test system (Pt). The refer-

ence volume was estimated by the point-of-use counting of the test point (Pt) systems.

A total area of 1.94 mm2 was analyzed to determine the volume densities of the alveolar

septa (Vv [sa]) and the alveolar spaces (Vv [a]) in sections stained with H&E, respect-

ively [24, 29].

Immunohistochemical assay

Histological sections were stained with HMGB1 (EPR3507) (Abcam, UK) by immuno-

histochemistry. Morphometric analysis of the sections stained by immunohistochemis-

try was performed in 20 random fields of the slides photographed at a magnification of

× 20 using ImageJ 1.6.0 software. In each field, the total number of nuclei and the num-

ber of nuclei labeled for the antibody used were counted, and the ratio of labeled nu-

clei/total nuclei was calculated [30].

Blood collection

A blood aliquot of each animal was collected by means of cardiac puncture in polypro-

pylene tubes with 15 μL of anticoagulants to evaluate hematological parameters.

Bc2800vet Auto Hematology Analyzer (Mindray® Bio-Medical Electronics Co. Ltda,

Shenzhen, China) was used for the analyses. Futhermore, to perform the blood smear,

2 μL of blood was pipetted (automatic pipette) at one end of a sterile histological slide.

They were stained with the Quick Panoptic Kit (Laborclin, Pinhais, Paraná, Brazil). A

total of 100 leukocytes were counted per slide, which were differentiated into mono-

cytes, neutrophils, and lymphocytes [31].

Statistical analysis

The sample size was calculated using a statistical power of 95% and a level of signifi-

cance of 5% (BioEstat 5.3). The variable used to calculate power was alveolar macro-

phages, we were looking for 30% reduction. Data were expressed as mean ± SD.

Evaluation of data normality was performed using the Kolmogorov-Smirnov test. The

univariate analysis of variance (ANOVA one-way) followed by Newman-Keuls post-test

was used for parametric data. The Kruskal-Wallis test followed by Dunn’s post-test was

used for nonparametric data. A significant difference was considered when p < 0.05. All

analyses were performed using GraphPad Prism software version 5.00 for Windows 7,

GraphPad Software (San Diego, CA, USA).
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Results
Total and differential leukocyte count in BALF

Hyperoxia promoted a reduction of total leukocytes (ANOVA; P < 0.0001) and macro-

phages (ANOVA; P < 0.0001) compared to control and surfactant groups (p < 0.05),

though the absolute levels of neutrophils (ANOVA; P = 0.0068) were significantly

higher than in control group animals (p < 0.05). The exogeneous surfactant administra-

tion decreased the levels of neutrophils and increased the levels of macrophages in ani-

mals exposed to hyperoxia (p < 0.05). Lymphocytes were not different than from the

control group. By comparison to the control, surfactant alone did not induce any

change in the level of inflammatory cells (Table 1).

Inflammatory markers in BALF

The levels of TNF, CCL5 and IL-17 in BALF were analyzed to assess the effects of exo-

geneous surfactant administration. Hyperoxia resulted in an increase in the levels of

TNF (ANOVA; p = 0.0003) and IL-17 (ANOVA; p = 0.0006) when compared to control

and surfactant groups (p < 0.05). These levels decreased with the administration of sur-

factant compared to hyperoxia group (p < 0.05). In addition, the exposure to hyperoxia

resulted in a decrease of CCL5 (ANOVA; p = 0.0028) compared to control and surfac-

tant group (p < 0.05). Surfactant administered before hyperoxia was not able to restore

the levels of CCL5 compared to hyperoxia group. By comparison to control, surfactant

alone did not induce any change in inflammatory markers in BALF (Table 2).

Redox status analyses

The analysis of lung homogenate revealed important protective effects of the surfactant

on hyperoxia-induced pulmonary damage. The exposure to 100% oxygen resulted in in-

creased levels of the malondialdehyde (ANOVA; p = 0.0143) and protein carbonyl con-

tent (ANOVA; p = 0.0167) when compared to control and surfactant groups (p < 0.05).

The levels of malondialdehyde and protein carbonyl were reduced compared to animals

exposed to hyperoxia (p < 0.05). The SOD activity (ANOVA; p = 0.0125) decreased in

the presence of 100% oxygen but increased with administration of exogenous surfactant

(p < 0.05). Regarding CAT activity (ANOVA; p = 0.1750), there were no difference

among the experimental groups. By comparison to control, surfactant alone did not

Table 1 Inflammatory cell in bronchoalveolar lavage

Group CG n = 9 SG n = 9 HG n = 9 HSG n = 9

Leucocytes (× 103/mL) 97.07 ± 13.66 93.72 ± 10.48 64.99 ± 10.48 a,b 71.65 ± 13.66a,b

Macrophages (× 103/mL) 94.23 ± 13.33 87.86 ± 13.33 48.35 ± 6.39 a,b 66.96 ± 11.06c

Lymphocytes (× 103/mL) 2.28 ± 1.06 1.63 ± 2.04 2.48 ± 1.20 2.16 ± 2.20

Neutrophils (× 103/mL) 0.56 ± 0.54 4.23 ± 3.14 14.16 ± 11.45 a,b 2.53 ± 2.18c

aControl group (CG)—control mouse exposed to normoxia in air room, without surfactant. Surfactant group (SG)—mice
were challenged with exogenous surfactant (surfactant challenge 2.0 mL/kg/day) by intranasal instillation (12 h before
hyperoxia). Hyperoxia group (HG)—the animals were exposed to 100% oxygen in chamber for 24 h. For more details, see
the “Methods” section. Hyperoxia-surfactant group (HSG)—mice were challenged with exogenous surfactant (surfactant
challenge - 2.0 mL/kg/day) by intranasal instillation (12 h before hyperoxia) after exposure lungs to 100% oxygen in
chamber for 24 h. significant difference between the groups when compared to the CG; bsignificant difference between
the groups when compared to the SG; csignificant difference between the groups when compared to the HG. Data are
expressed as mean ± SD and were analyzed by one-way ANOVA followed by Newman-Keuls’s post-test (p < 0.05)
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induce any change in relation the redox status in lung homogenate in our experimental

model of exposed to hyperoxia (Table 2).

Morphometric analyses of pulmonary parenchyma

The stereological analyses showed no significant difference among groups for Vv [a]

(ANOVA; p = 0.1994) and Vv [sa] (ANOVA; P = 0.4955) as observed in Fig. 1. We investi-

gated the expression of HMGB1 in lung parenchyma by immunohistochemistry. Alone,

hyperoxia led to a significant increase of HMGB1 expression (ANOVA; P = 0.0013) in

lung parenchyma compared to control and surfactant groups (p < 0.05). The administra-

tion of exogenous surfactant was able to reduce the levels of HMGB1 in lung parenchyma

Table 2 Biochemical analysis of damage and oxidative stress and inflammatory cytokines in lung
tissue homogenates

Group CG n = 9 SG n = 9 HG n = 9 HSG n = 9

SOD (U/mg ptn) 84.25 ± 7.68 76.26 ± 8.70 59.47 ± 5.25 a 93.63 ± 23.43c

CAT (U/mg ptn) 1.45 ± 0.46 1.09 ± 0.24 1.26 ± 0.18 1.57 ± 0.39

TBARS (nmol/mg ptn) 1.63 ± 0.15 1.72 ± 0.15 2.04 ± 0.24a,b 1.47 ± 0.44c

Protein carbonyl (nmol/mg ptn) 18.15 ± 1.91 15.58 ± 1.97 25.34 ± 1.86a,b 18.01 ± 5.08c

TNFα (pg/mL) 154.5 ± 8.21 156.6 ± 10.98 226.0 ± 33.96 a,b 152.5 ± 34.47c

CCL5 (pg/mL) 351.5 ± 68.68 345.4 ± 58.46 259.2 ± 45.63 a,b 221.9 ± 61.08 a,c

IL-17 (pg/mL) 351.9 ± 45.78 352.6 ± 148.70 616.0 ± 84.07 a,b 333.2 ± 77.31 c

Control group (CG)—control mouse exposed to normoxia in air room, without surfactant. Surfactant group (SG)—mice
were challenged with exogenous surfactant (surfactant challenge 2.0 mL/kg/day) by intranasal instillation (12 h before
hyperoxia). Hyperoxia group (HG)—the animals were exposed to 100% oxygen in chamber for 24 h. For more details, see
the “Methods” section. Hyperoxia-surfactant group (HSG)—mice were challenged with exogenous surfactant (surfactant
challenge 2.0 mL/kg/day) by intranasal instillation (12 h before hyperoxia) after exposure lungs to 100% oxygen in
chamber for 24 h. SOD superoxide dismutase, CAT catalase, TBARS thiobarbituric acid reactive substances, TNF tumor
necrosis factor, CCL5 C-C motif chemokine ligand 5 (RANTES), IL-17 Interleukin-17. asignificant difference between the
groups when compared to the CG; bsignificant difference between the groups when compared to the SG; csignificant
difference between the groups when compared to the HG. Data are expressed as mean ± SD and were analyzed by one-
way ANOVA followed by Newman-Keuls’s post-test (p < 0.05)

Fig. 1 Stereological analyses of lung sections. a Volume density of alveolar septa and b volume density of
alveolar airspace. c Histological section of lung parenchyma stained with HE. Barr = 50 μm. CG control group,
SG surfactant group, HG hyperoxia group, HSG hyperoxia and surfactant group
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of animals exposed to hyperoxia (p < 0.05). By comparison to control, surfactant alone did

not induce any change the levels of HMBG1 (Fig. 2).

Hematological parameters

The exposure to hyperoxia increased the number of erythrocytes (ANOVA;

p = 0.0024), hematocrit (ANOVA; p = 0.0061), hemoglobin (ANOVA; p = 0.0127)

when compared to control and surfactant groups (p < 0.05), while surfactant admin-

istered before hyperoxia prevented most of the effects when compared to hyperoxia

group (p < 0.05). There was a decrease in leucocytes (ANOVA; p = 0.0044) when

compared to control and surfactant groups (p < 0.05). Monocytes (ANOVA;

p = 0.0374) and neutrophils (ANOVA; p < 0.0001) were lower in animals exposed to

hyperoxia than in the control group (p < 0.05). Lymphocytes were not different

than from control group (Table 3).

Discussion
In this study, we evaluated the preventive effects of exogenous surfactant administra-

tion on an experimental model of exposure to pure oxygen. Our results showed that

administration of exogenous surfactant was able to reduce lung inflammation through

the reduction of inflammatory biomarkers such as TNF and HMGB1, as well as antioxi-

dant activity by reducing the redox imbalance caused by exposure to hyperoxia. In

regards to hyperoxia, our results show similar levels of BAL inflammatory cells and

TNF which have been previously associated with lung tissue injury (based on MMP2,

MMP9, and inflammatory scores) in studies from our group [6].

Fig. 2 Immunohistochemistry for HMGB1. a Histological section of lung parenchyma stained by
immunohistochemical technique. Barr = 100 μm. The arrows point to marked nuclei. b Ratio between the
number of nuclei labeled for HMGB1 antibody and the total number of nuclei. Data are expressed as mean
± SD (n = 9). (a) represents a significant difference between the groups when compared to the CG; the
letter (b) is significant difference between the groups when compared to the SG, and letter (c) represents a
significant difference between the groups when compared to the HG. Data were analyzed by one-way
ANOVA followed by Newman-Keuls’s post-test
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Immunomodulatory and anti-inflammatory effect of exogenous surfactant exposure prior

to hyperoxia

In the present study, we observed a lower number of monocyte and macrophages in

hyperoxia conditions with concomitant low expression of CCL5, possibly because

hyperoxia-induced apoptosis of alveolar macrophages (as in culture) mediated by

mitogen-activated protein kinase pathway [32].

Macrophages are important producers of CCL5 [33], and the exposure to hyperoxia

leads to programmed death of the alveolar macrophages. The absence of alveolar mac-

rophages activated seems to polarize immune response toward T cells and dendritic

cells [34].

In the present study, high levels of neutrophils were attracted into the lung, probably

resulting from a chemoattraction guided by HMGB1-modulated IL-17. This could have

important influence on oxidative damage, because neutrophils are a great source of re-

active oxygen species [35]. In a previous study, a concomitant elevation of IL-17 levels

and neutrophils in the airways induced by hyperoxia were observed [36]. A precursor

study showed that hyperoxia-induced inflammatory acute lung injury can be attenuated

by inhibition of extracellular HMGB1 [16]. In turn, IL-6 leads to higher STAT3 expres-

sion (including the stimulation of hSP-B transcription in respiratory epithelial cells)

[37]. These cytokines promote naive T cells differentiation to Th-17, mediated by ROR

gamma, STAT3 transcription factor [38] and HMGB1—an important promoter of

Th17 cell differentiation through the elevation of ROR-γt mRNA expression [39].

Antioxidant effect of exogenous surfactant exposure prior hyperoxia insult

The antioxidant effect of SP-B was observed in the present study, in vivo, when the

levels of SOD, TBARS, and protein carbonyl returned to normal after exposure to ex-

ogenous surfactant on hyperoxia-induced by inflammation. A recent study showed that

SP-B exhibits good scavenging activities on HO−·and O2
− [40]. We speculate that pro-

tection against hyperoxia-induced inflammatory acute lung injury is initiated by the

ability of the surfactant to significantly reduce oxidant radicals. Without oxidative stress

and lipid peroxidation, cell membranes remain intact and the primary immune barrier

Table 3 Hematologic parameters in BALB/c mice after hyperoxia and/or exogenous surfactant

Group CG n = 9 SG n = 9 HG n = 9 HSG n = 9

Erythrocyte (× 106/mm3) 7.70 ± 0.65 7.80 ± 0.60 9.09 ± 0.30a,b 8.13 ± 0.42c

Hematrocit (%) 37.08 ± 3.89 37.68 ± 2.66 44.34 ± 1.19 a,b 39.90 ± 1.66c

Hemoglobin (g/dL) 12.36 ± 1.56 12.56 ± 0.91 14.78 ± 0.59 a,b 13.30 ± 1.66c

Leucocytes (× 103/mL) 4.07 ± 0.93 4.05 ± 0.53 2.55 ± 0.48 a,b 3.04 ± 0.60

Monocyte (×103/mL) 0.85 ± 0.40 0.75 ± 0.18 0.37 ± 0.08 a 0.73 ± 0.19

Lymphocytes (× 103/mL) 2.55 ± 0.85 3.08 ± 0.73 2.12 ± 0.37 2.26 ± 0.43

Neutrophils (× 103/mL) 0.67 ± 0.27 0.22 ± 0.17 a 0.06 ± 0.02 a 0.05 ± 0.01 a

Control group (CG)—control mouse exposed to normoxia in air room, without surfactant. Surfactant group (SG)—mice
were challenged with exogenous surfactant (surfactant challenge 2.0 mL/kg/day) by intranasal instillation (12 h before
hyperoxia). Hyperoxia group (HG)—the animals were exposed to 100% oxygen in chamber for 24 h. For more details, see
the “Methods” section. Hyperoxia-surfactant group (HSG)—mice were challenged with exogenous surfactant (surfactant
challenge 2.0 mL/kg/day) by intranasal instillation (12 h before hyperoxia) after exposure lungs to 100% oxygen in
chamber for 24 h. asignificant difference between the groups when compared to the CG; bsignificant difference between
the groups when compared to the SG; csignificant difference between the groups when compared to the HG. Data are
expressed as mean ± SD and were analyzed by one-way ANOVA followed by Newman-Keuls’s post-test (p < 0.05)
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is maintained. In addition, normal levels of reactive oxygen species maintain cell regu-

lation, without apoptosis and cell signaling directed toward lung inflammation [41–43].

In vitro studies showed, however, that both surfactants, endogenous and exogenous,

may be subjected to oxidative inactivation [44] and the oxidative modification, and

functional inactivation of SP-A is accentuated when SP-A underwent lipoperoxidation

[45]. Further studies will be needed to assess the importance of this phenomenon.

Limitations of exogenous surfactant administration in adult patients with ARDS

Despite a strong biological rationale and positive results in pediatric patients, surfactant

therapy has failed to demonstrate a mortality benefit in adult patients with ARDS [3].

One potential explanation for the lack of positive findings may stem from a lack of sur-

factant reaching the distal airways and alveoli as a result of suboptimal instilled dose

volume. In recent computational and airway modeling experiments [46], it has been

suggested that adult conducting airways have almost 100-fold more surface airway

compared to neonatal airways and therefore require considerable amounts of instilled

surfactant to become fully coated. Only after saturation of the proximal conducting air-

ways can the distal airways be reached. Further mechanistic support for suboptimal de-

livery could be explained by highly concentrated formulation of surfactant used in

adult studies. The same computational modeling [46] suggests that highly concentrated

surfactant could further increase viscosity, thereby preventing distal delivery as may

have been the case in two unsuccessful controlled trials in adult patients with ARDS by

Spragg et al. [47, 48]. Furthermore, although we did not directly measure the lung dis-

tribution of surfactant, our experimental model of exogenous surfactant administration

was modeled after the study by Ganguly et al. [49]. They demonstrated that intranasally

administered particles deposited in non-target lung locations were translocated to per-

ipheral sites in the lung therapeutically after surfactant application [49].

On the other hand, new studies with KO animals (HMGB1−/−) and/or pharmaco-

logical antagonists might have reinforced mechanistic relationships over association be-

tween surfactant treatment and changes in biological biomarkers in our experimental

model or the association of hyperoxia and mechanical ventilation. This model does not

include mechanical ventilation which would be present in the clinical setting. However,

this allowed us to specifically identify the effects of surfactant by itself.

Conclusions
In summary, our study demonstrated that the administration of exogenous surfactant

was able to reduce the inflammation and oxidative stress of the lungs induced by

hyperoxia in our experimental model. Our results open new perspectives for research

on the mechanism of exogenous surfactant in protecting the airway and lungs, in

oxygen-rich lung microenvironment, against oxidative damage and aggravation of acute

inflammation induced by hyperoxia.
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