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Abstract

Background: Veno-venous extracorporeal carbon dioxide (CO2) removal (vv-ECCO2R) is
increasingly being used in the setting of acute respiratory failure. Blood flow rates range
in clinical practice from 200mL/min to more than 1500mL/min, and sweep gas flow
rates range from less than 1 to more than 10 L/min. The present porcine model study
was aimed at determining the impact of varying sweep gas flow rates on CO2 removal
under different blood flow conditions and membrane lung surface areas.

Methods: Two different membrane lungs, with surface areas of 0.4 and 0.8m2, were
used in nine pigs with experimentally-induced hypercapnia. During each experiment,
the blood flow was increased stepwise from 300 to 900mL/min, with further increases
up to 1800mL/min with the larger membrane lung in steps of 300mL/min. Sweep gas
was titrated under each condition from 2 to 8 L/min in steps of 2 L/min. Extracorporeal
CO2 elimination was normalized to a PaCO2 of 45mmHg before the membrane lung.

Results: Reversal of hypercapnia was only feasible when blood flow rates above
900 mL/min were used with a membrane lung surface area of at least 0.8m2.
The membrane lung with a surface of 0.4m2 allowed a maximum normalized CO2

elimination rate of 41 ± 6 mL/min with 8 L/min sweep gas flow and 900
mL blood flow/min. The increase in sweep gas flow from 2 to 8 L/min increased
normalized CO2 elimination from 35 ± 5 to 41 ± 6 with 900 mL blood flow/min,
whereas with lower blood flow rates, any increase was less effective, levelling out
at 4 L sweep gas flow/min. The membrane lung with a surface area of 0.8m2

allowed a maximum normalized CO2 elimination rate of 101 ± 12 mL/min with
increasing influence of sweep gas flow. The delta of normalized CO2 elimination
increased from 4 ± 2 to 26 ± 7 mL/min with blood flow rates being increased
from 300 to 1800 mL/min, respectively.

Conclusions: The influence of sweep gas flow on the CO2 removal capacity of ECCO2R
systems depends predominantly on blood flow rate and membrane lung surface area. In
this model, considerable CO2 removal occurred only with the larger membrane lung
surface of 0.8m2 and when blood flow rates of ≥ 900mL/min were used.
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Background
Veno-venous extracorporeal CO2 removal (vv-ECCO2R) is increasingly being used in the

setting of acute hypercapnic and hypoxemic respiratory failure to facilitate protective ven-

tilation, allowing early extubation or even to avoid invasive mechanical ventilation [1–9].

In this context, ECCO2R blood flow rates range from 200mL/min to more than 1500

mL/min [10–12], depending on the primary treatment aim [2]. Much effort has been

spent in the last decade to increase CO2 removal capacity by modifying the circuit and

the system [13–15]. With respect to possible technical modifications, blood flow rates,

sweep gas flow rates and membrane lung surface areas may be manipulated by the treat-

ing team at the bedside.

Among these, blood flow rates were reported to have the strongest impact on CO2

removal capacity [16, 17]. It was recently demonstrated that applying blood flow rates

of 1000mL/min with an appropriate membrane lung surface can remove about 50% of

total CO2 production and, therefore, can correct even severe respiratory acidosis [18].

Less is known about the influence of sweep gas flow in the setting of typical ECCO2R

blood flow rates, especially in regard to different membrane lung surface areas. This is

of particular importance since membrane lung surfaces from 0.4–1.3 m2 also clearly

impact on CO2 removal capacities independent of the blood flow level [18].

Furthermore, CO2 removal capacity is not only dependent on technical circumstances

of the system, but also on the absolute CO2 content of the blood. Most of the CO2 of

the body is stored as bicarbonate (HCO3
−) in slow reacting compartments such as bone

[19, 20] and is, therefore, not directly accessible for CO2 removal. Only 1–5% of the

total CO2 content is dissolved in the blood and can thus be extracorporeally removed.

Importantly, the amount of soluble CO2 is strongly correlated to the absolute CO2 level

in venous and arterial blood. Therefore, normalization of CO2 removal to a PCO2 of

45 mmHg before the membrane lung allows for the comparison of different settings

independent of the amount of PCO2 before the membrane lung [21].

The aim of the current study was, therefore, to determine the effect of varying degrees

of sweep gas flow on normalized CO2 removal using a clinically typical range of blood

flows for ECCO2R via a porcine model of severe hypercapnic respiratory failure.

Material and methods
Veno-venous-extracorporeal CO2 removal (ECCO2R) techniques

For the vv-ECCO2R system, two different membrane lungs (Getinge, Maquet Car-

diopulmonary Care, Rastatt, Germany) based on the Rotaflow® platform were used.

The membrane lungs consisted of a polymethylpentene membrane with surface

areas of 0.4 and 0.8 m2, respectively. These surface areas have been chosen due to

the previous results [18] and current clinical practice in centres applying ECCO2R

with different systems (0.4 and 0.8 m2). Both membrane lungs have a comparable

rhomboid design. The systems were primed with normal saline solution. Heparin

(5000 IE) was added to the running system, and bolus application of 5000 IE every

2–3 h was used during the running of the systems to avoid clotting.

For venous access, a 23 Fr Bicaval Avalon ELITE Dual Lumen Cannula® (Getinge

Group, Maquet Cardiopulmonary Care, Rastatt, Germany) was inserted into the right

jugular vein. Correct placement of the cannula was confirmed by echocardiography.
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The membrane lung with 0.4 m2 was measured with system blood flow rates of 300,

600 and 900 mL/min, whereas the membrane lung with 0.8 m2 was measured with sys-

tem blood flow rates from 300 to 1800mL/min in increasing steps of 300 mL/min,

respectively. For each single membrane lung surface area and blood flow rate, sweep

gas flow was titrated in steps of 2 L/min increasing from 2 L/min to 8 L/min with a de-

livered oxygen fraction of 1.0.

Animal model

The study was approved by the Animal Research Committee of Uppsala University/

Sweden (ethical approval number C77/16). Pigs (body weight = 39 ± 2 kg) were anaes-

thetized with IV ketamine 25–50 mg/kg/h, midazolam 90–80 μg/kg/h, fentanyl 3–6 μg/

kg/h, and rocuronium 2.5–5.0 mg/kg/h was added when adequate anaesthesia was

ascertained by lack of response of painful stimulation between the front hooves. The

trachea was intubated with a cuffed endotracheal tube (inner diameter, 7 mm). The pigs

were ventilated with a Servo-i ventilator (Maquet Critical Care, Solna, Sweden). Body

temperature was kept at 38 °C throughout the study period by use of a heater cooling

unit (Maquet Critical Care, Solna, Sweden). Arterial blood was sampled from the left

carotid artery. The estimated CO2 production in this setting is about 200–280 mL/min

in pigs [22, 23], which is comparable to a resting adult human.

Study design

Vv-ECCO2R was performed in nine pigs following endotracheal intubation, mechanical

ventilation and induction of hypercapnia by increased dead space ventilation, as described

previously [16, 18]. Anatomical dead space was increased by adding an additional tube

between the endotracheal tube and the “Y” piece of the ventilator circuit. The length of

the additional tube was titrated until hypercapnia was induced with a target PaCO2 value

ranging between 90 and 110mmHg. The animals were ventilated in a volume-controlled

mode with a tidal volume of 220–250mL, a positive end-expiratory pressure of 5 cmH2O

and a breathing frequency of 14–16/min. The dead space fraction and minute ventilation

were subsequently maintained for the entire duration of the experimental period after

having reached equilibrium with the target PaCO2 of 90 to 110mmHg.

The experiments were performed in each pig in a standardized fashion. PaCO2 was

equilibrated between every system for at least 30 min. When PaCO2 was stable at the

target, blood flow was increased stepwise from 300mL/min to 1800mL/min. At each

blood flow level, sweep gas flow was titrated from 2 to 8 L/min in steps of 2 L/min.

CO2 and blood gas measurement

Blood gas analysis was performed with an ABL 800, Radiometer, (Copenhagen, Denmark)

with separate measurement for haemoglobin. Extracorporeal CO2 removal was calculated

as reported in detail in previous studies [18, 24, 25]. Of note, to compare the amount of

CO2 removal at different pre-membrane PCO2 levels, the extracorporeal CO2 removal

was normalized to a PCO2 of 45mmHg. This normalization allowed comparison of CO2

removal rates at different PCO2 levels, since CO2 removal in general is markedly

dependent on the amount of soluble CO2 (and thus of PCO2) in the blood [26].

In more detail, the authors are aware that it is difficult to normalize CO2 removal to

a specific PaCO2 precisely, since CO2 can also be dissolved from bicarbonate. However,
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the carbon dioxide dissociation curve is quite linear in the PCO2-interval in our study,

i.e. when PCO2 is reduced (in our study by the ECCO2R system), this will reduce the

blood content of carbon dioxide according to the slope of the curve. Another factor

that affects the CO2 removal is the Haldane effect; since blood PO2 increases in the

ECCO2R-membrane, the Haldane effect will cause a parallel shift downwards of the

CO2 dissociation curve, and thus the difference between two PCO2 levels will be more

pronounced [27–29].

Statistics

For statistical analysis, GraphPad Prism 7 for Macintosh computer (La Jolla, CA 92037,

USA) was used. Data were tested for normality using the Kolmogorov-Smirnov test. All

data are given as mean with standard deviation.

Results
For independent comparison, normalized CO2 elimination (Figs. 1 and 2 and Table 1) was

calculated by normalizing the partial pressure of CO2 before the membrane lung to 45

mmHg to compensate for different PCO2 levels pre-membrane lung as previously described

[18, 21]. Non-normalized extracorporeal CO2 removal (Fig. 3) with different CO2 levels

pre-membrane lung are presented in Fig. 4, demonstrating a blood flow-, sweep gas flow-

and membrane lung-dependent CO2 removal capacity.

The membrane lung with a surface of 0.4 m2 allowed a maximum normalized CO2

elimination rate of 41 ± 6mL/min with 8 L/min sweep gas flow and 900mL blood flow/

min (Fig. 1 and Table 1). Increase of a sweep gas flow from 2 to 8 L/min, at its maximal

effect, increased the normalized CO2 elimination from 35 ± 5 to 41 ± 6mL/min at 900

mL blood flow/min, whereas at lower blood flow rates, any increase was less effective,

levelling out early on at 4 L sweep gas flow/min.

The membrane lung with a surface area of 0.8m2 showed comparable results within

blood flow rates from 300 to 600 mL/min, although the absolute amount of CO2

A B

Fig. 1 Normalized extracorporeal elimination of carbon dioxide (CO2) depending on blood flow and sweep
gas flow with a membrane lung surface of 0.4m2 (a) and 0.8m2 (b). Normalized CO2 elimination was
calculated by normalizing the partial pressure of carbon dioxide before the membrane lung to 45 mmHg.
The normalized extracorporeal CO2 elimination was plotted against sweep gas flow. Blood flow was titrated
from 300 to 900mL/min (a) and 300 to 1800mL/min (b). Each data point represents the mean and
standard deviation among nine pigs
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removal was higher than with a surface area of 0.4 m2 (Fig. 1 and Table 1). However,

the effect of increased sweep gas flow from 2 to 8 L/min was comparable to the smaller

membrane lung. When progressing from 900mL/min up to 1800mL/min, there was an

increasing effect of increasing sweep gas flow on extracorporeal CO2 elimination (Table 1).

Blood flow rates of 900mL/min showed an increase in normalized CO2 elimination from

55 ± 9 to 70 ± 14mL/min (delta normalized CO2 elimination of 15mL/min) by increasing

the sweep gas flow from 2 to 8 L/min. With each step of increase in blood flow (steps of

300mL/min), the influence of increased sweep gas flow also increased. Accordingly, the

maximum delta between 2 and 8 L sweep gas flow/min (26 ± 7mL/min) occurred with

1800mL blood flow/min.

A B

Fig. 2 Difference in normalized extracorporeal elimination of carbon dioxide (CO2) between 8 and 2
L sweep gas flow/min depending on blood flow and membrane lung surface (0.4m2 (a) and 0.8m2 (b))

Table 1 Normalized extracorporeal CO2 elimination (absolute values are given in millilitre per
minute). Normalized CO2 elimination was calculated by normalizing the partial pressure of carbon
dioxide before the membrane lung to 45 mmHg. Values are given as mean with standard
deviation

Sweep gas flow
2 L/min

Sweep gas flow
4 L/min

Sweep gas flow
6 L/min

Sweep gas flow
8 L/min

ML surface 0.4m2

BF 300mL/min 20.1 ± 2.9 23.3 ± 3.2 23.2 ± 2.3 23.7 ± 3.7

BF 600mL/min 27.8 ± 5.8 32.2 ± 6.9 32.0 ± 7.6 32.0 ± 6.6

BF 900mL/min 34.8 ± 4.9 37.7 ± 8.7 41.7 ± 4.5 41.4 ± 6.3

ML surface 0.8m2

BF 300mL/min 23.8 ± 2.8 26.3 ± 4.7 27.0 ± 4.3 27.4 ± 3.0

BF 600mL/min 39.4 ± 4.1 43.4 ± 5.0 45.2 ± 6.1 46.3 ± 6.4

BF 900mL/min 54.9 ± 8.5 62.1 ± 12.1 66.3 ± 11.9 69.8 ± 14.1

BF 1200mL/min 66.6 ± 6.4 73.8 ± 4.9 77.4 ± 7.2 82.3 ± 9.0

BF 1500mL/min 70.2 ± 6.6 81.5 ± 7.5 93.2 ± 10.2 92.4 ± 7.6

BF 1800mL/min 74.5 ± 11.0 93.3 ± 8.4 100.0 ± 11.0 100.9 ± 12.0
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A B

Fig. 3 Extracorporeal elimination of carbon dioxide (CO2) depending on blood flow and sweep gas
flow with a membrane lung surface of 0.4m2 (a) and 0.8m2 (b). The extracorporeal CO2 elimination
was plotted against sweep gas flow. Blood flow was titrated from 300 to 900 mL/min (a) and 300 to
1800 mL/min (b). Each data point represents the mean and standard deviation among nine pigs. Of
note, compared to Fig. 1, the values shown are the absolute and non-normalized CO2 values, demonstrating
the physiological variance of the CO2 amount before the membrane lung in an animal ECCO2R experiment

A B

C D

Fig. 4 PCO2 pre- and post-membrane lung under different blood flow conditions (300–1800 mL/min)
with two different membrane lung surface areas (0.4m2 (a and c) and 0.8m2 (b and d)). Each data
point represents the mean and standard deviation among nine pigs
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Of note, Fig. 4 demonstrates a linearly decreasing CO2 pre-membrane lung with

increasing blood flow rates (Figs. 4a and b) with a more pronounced effect with higher

sweep gas flow rates (Figs. 4c and d).

Discussion
The present study provides the most comprehensive overview to date of the influence of

sweep gas flow on the CO2 removal capacity of ECCO2R systems with varying blood flow

rates and membrane lung surface areas as used in this model. It adds to previous animal

studies on technical determinants of successful vv-ECCO2R. While two former studies

using a comparable study design have primarily focused on the impact of the blood flow

rate [16] and the membrane lung surface area [18], respectively, on the capability of the

system to remove CO2, the present study aimed to determine the role of the sweep gas

flow in the intersection of these three key components of vv-ECCO2R. The main finding

is that the impact of the sweep gas flow varies depending on the size of the membrane

lung and the chosen blood flow rate. Thus, the impact of the sweep gas flow rate is clini-

cally negligible when using a small membrane lung surface area of 0.4 m2 in addition to

blood flow rates of up to 900mL/min.

In contrast, the impact of the sweep gas flow rate appears to be clinically more critical

when using a larger membrane lung surface of 0.8 m2. In this case, the difference of the

CO2 elimination, following mathematical normalization to 45mmHg when comparing 8

and 2 L sweep gas flow per minute, is at least 10mL/min or even higher at a blood flow

rate of 900mL/min, and this difference appears to gradually increase when using even

higher blood flow rates. Eventually, this difference reached approximately 25mL/min at a

blood flow rate of 1800mL/min, taking into account that normalized CO2 elimination is

calculated, thus the real CO2 removal capacity might be even higher if CO2 before the

membrane lung is above 45mmHg.

The present findings confirm one of the previous porcine studies on pathophysiological

and technical considerations of ECCO2R [16]. This study had already signified that the

capability of extracorporeal CO2 removal rises with increasing sweep gas flow rates. How-

ever, the experiments of increasing sweep gas flow rates in this former study were per-

formed with a fixed blood flow rate of 1000mL/min. Therefore, the current study adds to

the existing knowledge in so far as the increased capability to extra-corporally remove

CO2 at higher sweep gas flow rates is substantially greater with higher blood flow rates,

but negligible with a blood flow below 600mL/min.

However, in view of the current and the previous findings, the amount of blood flow

still appears to play the most important role for the success of vv-ECCO2R. Neverthe-

less, current evidence, including the present trial, now suggests that there is a complex

interplay between the three major selectable regulating variables, i.e. blood flow rate,

sweep gas flow rate and the membrane lung surface area.

The present study has some important clinical implications: First, severe hyper-

capnia is most sufficiently handled by ECCO2R with a large enough membrane

lung surface area (≥ 0.8 m2) using higher blood flow as well as sweep gas flow

rates. Second, to achieve the desired results for vv-ECCO2R, the main technical de-

terminants of vv-ECCO2R (membrane lung surface area, blood flow rate and sweep

gas flow rate) should be assessed before starting up the procedure. In addition, in

order to adequately compare different methods, these technical conditions have to
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be determined in advance and reported in clinical studies. This may be most

relevant in future clinical trials with adaptive designs which are dependent on the

CO2 removal capacity.

The present study has some limitations related to the porcine model used and the calcu-

lated CO2 removal. These limitations have been extensively discussed in the previous

publications on vv-ECCO2R using a very similar setting for the animal experiments and are,

therefore, with reference to the previous studies only briefly addressed [16, 18]. First, data

acquired in pigs cannot automatically be transferred into the clinical scenario; however, it

has been shown that CO2 production in pigs is comparable to CO2 production observed in

adult humans requiring mechanical ventilation [23], likely allowing comparison. Second, the

typical clinical scenario of exacerbated chronic obstructive pulmonary disease (COPD) with

severe airflow limitation was not simulated. Therefore, the interaction between vv-ECCO2R

and mechanical ventilation could not be investigated. Third, the animals were not critically

ill and had a normal CO2 production in contrast to patients with an acute exacerbation of

COPD or with sepsis, who usually have higher CO2 production. Therefore, the conclusions

regarding the clinical effectiveness of different systems used for vv-ECCO2R in the clinical

setting must be tempered.

Conclusions
The influence of sweep gas flow on the CO2 removal capacity of ECCO2R systems

depends predominantly on blood flow rate and membrane lung surface area. In this

model, considerable CO2 removal occurred only with the larger membrane lung surface

of 0.8m2 and when blood flow rates of ≥ 900mL/min were used. Furthermore, it can be

emphasized that sweep gas flow has a significant impact on CO2 removal capacity in

ECCO2R, but only if blood flow rates of 900mL/min and above are applied. Finally, in re-

gard to future ECCO2R clinical trials, especially those with adaptive designs, it will be im-

portant to understand the influence of sweep gas flow in the intersection of blood flow,

membrane lung surface area and sweep gas flow.
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