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Abstract

Background: To maintain adequate oxygen delivery to tissue, resuscitation of critically
ill patients is guided by assessing surrogate markers of perfusion. As there is no direct
indicator of cerebral perfusion used in routine critical care, identifying an accurate
strategy to monitor brain perfusion is paramount. Near-infrared spectroscopy (NIRS) is a
non-invasive technique to quantify regional cerebral oxygenation (rSO2) that has been
used for decades during cardiac surgery which has led to targeted algorithms to
optimize rSO2 being developed. However, these targeted algorithms do not exist
during critical care, as the physiological determinants of rSO2 during critical illness remain
poorly understood.

Materials and methods: This prospective observational study was an exploratory
analysis of a nested cohort of patients within the CONFOCAL study (NCT02344043)
who received high-fidelity vital sign monitoring. Adult patients (≥ 18 years) admitted
< 24 h to a medical/surgical intensive care unit were eligible if they had shock and/or
required mechanical ventilation. Patients underwent rSO2 monitoring with the
FORESIGHT oximeter for 24 h, vital signs were concurrently recorded, and clinically
ordered arterial blood gas samples and hemoglobin concentration were also
documented. Simultaneous multiple linear regression was performed using all
available predictors, followed by model selection using the corrected Akaike
information criterion (AICc).

Results: Our simultaneous multivariate model included age, heart rate, arterial
oxygen saturation, mean arterial pressure, pH, partial pressure of oxygen, partial
pressure of carbon dioxide (PaCO2), and hemoglobin concentration. This model
accounted for a significant proportion of variance in rSO2 (R2 = 0.58, p < 0.01) and
was significantly associated with PaCO2 (p < 0.05) and hemoglobin concentration
(p < 0.01). Our selected regression model using AICc accounted for a significant
proportion of variance in rSO2 (R2 = 0.54, p < 0.01) and was significantly related to
age (p < 0.05), PaCO2 (p < 0.01), hemoglobin (p < 0.01), and heart rate (p < 0.05).

Conclusions: Known and established physiological determinants of oxygen delivery
accounted for a significant proportion of the rSO2 signal, which provides evidence that
NIRS is a viable modality to assess cerebral oxygenation in critically ill adults. Further
elucidation of the determinants of rSO2 has the potential to develop a NIRS-guided
resuscitation algorithm during critical illness.
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Background
The resuscitation phase (i.e., first 24–48 h) of critical illness is directed at maintaining

adequate oxygen delivery to tissues to end-organ injury. Several organ systems have ob-

jective surrogate markers that can be serially monitored to ensure optimal end-organ

perfusion. For example, renal perfusion is monitored by serially measuring urine output

and serum creatinine levels [1]. In contrast, there is currently no well-defined proxy of

cerebral perfusion used in routine clinical practice. This constitutes an important gap

in our understanding of critical illness, as neuronal ischemia is a universal pathological

finding in patients who die in the intensive care unit (ICU) [2]. In the absence of ob-

jective, quantitative markers, clinicians in the ICU rely upon the neurological exam

(e.g., evaluating alertness, orientation, and ability to follow motor commands) [3] to as-

sess brain perfusion. This clinical exam is often confounded by sedation, analgesia, and

severity of illness. Therefore, clinical assessments may be unreliable in this setting and

an alternative strategy to accurately monitor cerebral perfusion is needed to prevent ir-

reversible neuronal injury.

Near-infrared spectroscopy (NIRS) is a simple and non-invasive technique to quantify

regional cerebral oxygenation (rSO2). An adhesive sensor and light source are placed

on the forehead, which emit varying wavelengths of infrared light (e.g., 700–1000 nm)

that pass through the skin and bone with minimal absorption to an approximate depth

of 2–3 cm of cerebral tissue [4]. The light that returns to the sensor represents the

amount of spectral absorption occurring in the tissue bed (i.e., changes in oxygenated-

and deoxygenated-hemoglobin), with venous circulation accounting for the majority of

the signal (75–80%) [5], and is typically displayed as an absolute value ranging from 0

to 99%. The NIRS signal correlates with other measures of brain perfusion (e.g., jugular

venous bulb oxygen saturation [6], brain tissue oxygen tension [7], and CT perfusion

[8]), and its feasibility in critical care research has already been demonstrated [9].

Furthermore, NIRS has been described for many years in the cardiac anesthesiology

literature. A targeted algorithm to optimize rSO2 during cardiac surgery has been de-

veloped [10, 11], which offers the potential to detect changes in cerebral perfusion and

guide clinician intervention, and it has been demonstrated that nearly every episode

(i.e., 97%) of cerebral desaturation can be successfully reversed [12]. However, outside

of the operating room, the physiological determinants of cerebral oxygenation are

poorly understood. As a result, targeted algorithms do not currently exist to optimize

rSO2 in the ICU. This may be relevant, as we have recently demonstrated that low

rSO2 is an independent risk factor for the subsequent development of delirium in crit-

ically ill patients [13]. A nested cohort within that prospective observational study

underwent high-fidelity vital sign monitoring. The objective of the present study was to

define the hemodynamic and physiological determinants of the NIRS-derived rSO2

from that nested cohort of critically ill patients.
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Material and methods
Study design and recruitment

The Cerebral Oxygenation and Neurological outcomes FOllowing CriticAL illness

(CONFOCAL) study (NCT02344043 clinicaltrials.gov) was a single-center prospective

observational study (n = 103) for which the full protocol has been previously published

[14]. As our protocol advanced from feasibility to a single-center pilot study, so did our

data collection strategy, which initially began as hourly recordings documented in the

electronic health records and advanced to continuous vital sign monitoring described

below. The current manuscript is an exploratory analysis of a nested cohort of patients

(n = 43) who received high-fidelity vital signs monitoring throughout the CONFOCAL

study. Briefly, adult patients (≥ 18 years) admitted < 24 h to a 33-bed general medical/

surgical and trauma ICU were eligible if they required mechanical ventilation with an

expected duration > 24 h and/or having shock of any etiology. Shock was defined by

vasopressor requirement at pre-specified doses [14]. Participants were excluded if they

had a life expectancy < 24 h, a pre-ICU diagnosis of cognitive dysfunction as indicated

by their medical records, or a primary central nervous system diagnosis (e.g., traumatic

brain injury).

Data acquisition: rSO2, vital sign monitoring, and blood gas collection

Immediately following enrolment, patients underwent rSO2 monitoring with the FORE-

SIGHT monitor (CASMED, Caster Medical, Canada). For the majority of patients, a

single 5-cm sensor was placed on the center of the patients’ forehead, > 3 cm from the

superior rim of the orbit to avoid the frontal sinus [15], and recorded for 24 h. As the

more traditional sensor placement used for patients undergoing cardiac surgery is bilat-

erally on the frontal lobes [16], a subset of CONFOCAL patients (n = 10) received an

additional bilateral sensor (right) to quantify the level of agreement between the two

NIRS sensors. This analysis indicated that the sensors shared an acceptable level of

agreement (see Additional file 1: Figure S1) and that one sensor was adequate. These

rSO2 recordings were not revealed to the treating clinicians. To assess the relationships

among patient hemodynamics with the rSO2 recordings, we used commercially avail-

able software (Bedmaster, Excel Medical Electronics, FL, USA) to simultaneously cap-

ture the following high-frequency vital signs: heart rate (HR), arterial oxygen saturation

(SpO2), systolic and diastolic blood pressure, and mean arterial pressure (MAP). These

data were captured locally and stored on dedicated servers at the Queen’s University

Centre for Advanced Computing (www.cac.queensu.ca). We also documented arterial

and central venous blood gases, as well as hemoglobin concentration (Hb), when or-

dered clinically throughout this 24-h period of recording. As the first 24–48 h of critical

care are guided at resuscitation of the patient, we chose to record for the first 24 h a

patient’s ICU stay as understanding the determinants of rSO2 during this crucial period

are foundational to the future development of targeted algorithms to optimize cerebral

oxygenation.

Data cleaning: detecting and editing data abnormalities

As databases containing high-frequency vital sign recordings are known to contain arti-

facts [17], we undertook data validation and cleaning steps to minimize the inclusion of
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these in our analysis. We removed missing data, as well as outliers based on cutoffs de-

termined by inspection of histograms, see Additional file 2: Figure S2. Specifically, we

removed HR values < 44 or > 134, MAP > 130 or < 39, SpO2 < 80, and rSO2 < 50 or >

85. We also removed data that were logically inconsistent, such as measures where the

diastolic pressure was higher than the systolic or when values equaled 0.

Data analysis

Determinants of the NIRS-derived rSO2 signal

All statistical analyses were performed using the R software version 3.3.2 [18]. Due to

the variability of data collection (i.e., high frequency vs clinically ordered) presented

above, all physiological variables were condensed to a 24-h mean prior to regression

analysis in order to ensure that the data included were independent values rather than

repeated recordings, which would violate the independence assumption of linear re-

gression. Our primary objective was to assess the hemodynamic and physiological vari-

ables (i.e., determinants of oxygen delivery) predicting rSO2 during the first 24 h of

critical illness. Therefore, simultaneous multiple linear regression was performed using

HR, SpO2, MAP, arterial pH, arterial partial pressure of oxygen (PaO2), arterial partial

pressure of carbon dioxide (PaCO2), and Hb as predictors. Although systolic and dia-

stolic blood pressures were recorded, we only included MAP due to redundancy. As in-

creasing age has been associated with decreases in cerebral blood flow (CBF) [19], and

potentially rSO2, we included age as a covariate. A correlation matrix illustrating the

various relationships between the predictors of rSO2 can be observed in Additional file 3:

Figure S3. Due to potential overfitting, model selection was implemented to generate a

reduced multivariate regression model using the MuMIn package for R [20]. This pack-

age was used to iteratively compare all possible models given the data, whereas other

model selection techniques may drop predictors in a stepwise fashion (i.e., backwards

or forwards) [21] and only evaluate a small fraction of all possible subsets of the data.

Due to our relatively small sample size potentially biasing our analysis, we applied the

corrected AIC method (AICc) [22] instead of implementing the Akaike’s information

criterion (AIC) [23] as the model criterion. The lowest AICc value represents the most

parsimonious model accounting for a large amount of variance with as few predictors

as possible, so as not to over- or under-fit the model while minimizing information

loss. Diagnostic testing indicated that the residuals were normally distributed, had equal

variances, and did not suggest substantial evidence of collinearity among predictors

(data not shown).1 The regression model and individual predictors were considered sta-

tistically significant if p < 0.05. The simultaneous and the selected regression model

were compared using AIC.

Sensitivity power analysis

We performed a sensitivity power analysis to determine the minimum effect size that

our regression analysis, based on model selection using AICc, could have detected

given the data. We used the following model parameters: sample size = 43, power =

0.90, number of predictors = 4, and α = 0.05, which indicated that we could have de-

tected a minimum effect of R2 = 0.289. The sensitivity power analysis was performed

using G*Power [24] version 3.1.9.2.
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Results
Patient characteristics

From March 2014 to September 2016, 1155 patients were assessed for eligibility

and 104 were enrolled. Of this cohort (n = 103), 56 patients (54%) underwent

high-frequency vital sign monitoring from August 2015 to September 2016, 7 of

which (13%) were excluded because they did not have an arterial line present. Of

the remaining 49 patients, 6 were excluded due to missing or insufficient arterial

blood gas data, resulting in the inclusion of 43 subjects in the regression analysis

(Fig. 1). The primary admitting diagnoses were mainly respiratory failure (30%),

followed by severe sepsis/septic shock (16%), cardiac (16%), and gastrointestinal

(16%), whereas previous comorbidities largely included a history of hypertension

(56%), cardiac complications (44%), and respiratory disease (33%). Most patients

were intubated at the time of enrollment (95%), and approximately half (56%) were

being treated with vasoactive agents. The median age was 68 years (IQR, 58.5–79),

most patients were male (67%), median length of ICU stay was 7 days (IQR, 4 to

13), and ICU mortality was 7 (16%). Full demographics and clinical characteristics

are shown in Table 1.

Fig. 1 CONSORT diagram demonstrating patient inclusion and exclusion during patient recruitment and
subsequent data analysis
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Data collection and analysis

High-frequency vital sign monitoring was recorded for a median duration of 23.95 h

(IQR, 23.23–24.02), yielding more than 350,000 individual vital sign measurements, in-

cluding rSO2 recordings. Nearly 20,000 data points were removed due to missing data

(5.5%), and a further 79 removed due to zero or negative values which were deemed er-

roneous. We inspected histograms of the distribution of each vital sign to identify

Table 1 Demographics and clinical characteristics

Characteristic Nested cohort (n = 43)

Median age (years, [IQR]) 68 [58.5–79]

Male gender (no. [%]) 29 [67]

Admitting diagnosis (no. [%]):

Respiratory failure 13 [30]

Severe sepsis/septic shock 7 [16]

Cardiac 7 [16]

Gastrointestinal 7 [16]

Vascular 4 [9]

Trauma 3 [7]

Neurological 0

Other* 2 [5]

APACHE score (median, IQR) 20 [16–26]

Co-morbidities (no. [%]):

Cardiac** 19 [44]

Hypertension 24 [56]

Respiratory*** 14 [33]

Diabetes 11 [26]

Active tobacco use 11 [26]

Heavy alcohol use 5 [12]

At time of enrolment (no. [%]):

Intubated 41 [95]

Vasoactive agents 24 [56]

ICU LOS (median [IQR]) 7 [4–13]

ICU mortality (no. [%]) 7 [16]

Physiological variables (median [IQR]):

MAP (mmHg) 73.77 [71.04–80.84]

HR (bpm) 85.77 [73.82–99.79]

PaCO2 (mmHg) 40.50 [35.20–44.75]

PaO2 (mmHg) 86.25 [79.75–94.17]

pH (mmHg) 7.37 [7.33–7.42]

SpO2 (%) 96.34 [95.23–97.52]

Hb (g/L) 102.67 [86.00–115.50]

rSO2 (%) 68.41 [64.56–72.16]

MAP mean arterial pressure, HR heart rate, PaCO2 arterial partial pressure of carbon dioxide, PaO2 arterial partial pressure
of oxygen, SpO2 arterial oxygen saturation, Hb hemoglobin, rSO2 regional cerebral oxygenation
*Other included the following: drug overdose/withdrawal and acute kidney injury
**Cardiac included the following: arrhythmia, prior myocardial infarction, prior cardiac arrest, known coronary artery
disease, and/or congestive heart failure
***Respiratory included the following: asthma or COPD
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cutoffs distinguishing true physiologic measures from likely artifacts. Based on these

cutoffs, a further 6866 observations (2%) were removed (see Additional file 4: Figure

S4). Compared to the low amount of missing vital sign data, the physiological data ob-

tained from clinically ordered central venous blood gases data were sparse and subse-

quently excluded from our analysis due to a high degree of missingness. For example,

all 43 patients had at least 1 arterial blood gas recording, where 28 patients did not

have a venous blood gas sample during the first 24 h of their ICU stay. Furthermore,

the median collected arterial blood gas samples was 2 (IQR, 1–3), whereas the median

collected venous blood gas samples was 0 (IQR, 0–1). Median Hb collection through-

out the 24 h of recording was 1 (IQR, 1–2). Therefore, most of the available data was

successfully captured for the vital sign monitoring and arterial blood gas data, but a

substantial amount of central venous blood gas data was missing or inadequate for sub-

sequent regression analysis.

Physiological determinants of rSO2 during critical illness

Simultaneous multiple regression analysis

Our simultaneous regression model included all available variables that could influence

cerebral oxygen delivery (i.e., age, HR, SpO2, MAP, pH, PaO2, PaCO2, and Hb concen-

tration). This model accounted for a significant proportion of variance in the

NIRS-derived rSO2 signal, R2 = 0.58, F (8, 34) = 5.845, p < 0.01. However, PaCO2 and

Hb concentrations were the only significant predictors in the regression model, b =

0.165, t(34) = 2.035, p < 0.05, and b = 0.086, t(34) = 2.772, p < 0.01, respectively. Both

predictors had a positive relationship with rSO2 during the first 24 h of critical illness.

However, several predictors were included in this model, which may have decreased

precision of the regression coefficients. This is evidenced by the substantial difference

observed between the overall R2 and the adjusted R2 of 0.48. The full regression results

are shown in Table 2.

Model selection using AICc and multiple regression

Model selection based on the AICc indicated that the top model (i.e., lowest AICc)

included the following predictors: age, PaCO2, Hb, and HR. Regression analysis of

this selected model accounted for a significant proportion of variance in the rSO2

signal, R2 = 0.536, F (4, 38) = 10.95, p < 0.01, and a comparable adjusted R2 of 0.49

was observed for this reduced model. Furthermore, this analysis indicated that the

percentage of rSO2 increased significantly with increases in PaCO2, b = 0.208,

t(38) = 3.062, p < 0.01; Hb concentration, b = 0.089, t(38) = 3.357, p < 0.01; and HR,

b = 0.079, t(38) = 2.230, p < 0.05 (Table 2 ). In contrast, the percentage of rSO2 sig-

nificantly decreased as age increased, b = − 0.100, t(38) = − 2.329, p < 0.05. The un-

adjusted effects of the significant predictors on rSO2 can be observed in Fig. 2.

Model comparison using AIC indicated that the selected regression model (i.e.,

age, PaCO2, Hb, and HR) had a lower AIC when compared to the simultaneous re-

gression model (AIC = 239.64 and 243.41, respectively), which is further evidenced

by the minor difference in variance accounted for by each model, but the selected

model includes substantially fewer predictors.
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Discussion
It has been argued that intraoperative NIRS monitoring should be the standard of care

[25], as NIRS has already demonstrated clinically relevant results when used to monitor

rSO2 throughout cardiac surgery including fewer incidences of organ dysfunction and

shorter ICU stays [26, 27]. However, it is unknown if the determinants of cerebral per-

fusion during cardiac surgery are similar among critically ill patients who may have dis-

similar physiological derangements as part of their illness. We used multivariate

modeling to assess the physiological determinants of the NIRS-derived rSO2 signal dur-

ing the first 24 h of critical illness in adult patients. Our selected regression model sug-

gested that PaCO2, HR, and Hb concentration may be possible therapeutic targets to

optimize cerebral oxygenation, as our model accounted for > 50% of the variance in

rSO2. As this analysis was exploratory, we conducted a sensitivity power analysis. Given

that we were powered to detect an effect approximately half of what we observed, there

is improved confidence that our analysis was not biased for only detecting inflated ef-

fect sizes [28]. As this study was based on a single center, our results will need to be

further validated in a larger and more diverse cohort of critically ill patients.

Relationship between known determinants of oxygen delivery and rSO2

As a preliminary step towards demonstrating the utility of NIRS as a surrogate marker

of cerebral perfusion in critically ill patients, we assessed the relationship between rSO2

and other variables related to oxygen delivery that are monitored in routine clinical

Fig. 2 Scatter plots illustrating the various relationships between regional mean cerebral oxygenation (rSO2)
recordings and mean levels of various predictors of oxygen delivery (i.e., age, hemoglobin, partial pressure
of carbon dioxide, and heart rate). Black data points represent each individual patient with the blue line
representing a linear model fit to the data and the gray-shaded region representing the 95%
confidence interval
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practice. It is well accepted that the amount of oxygen delivered to tissues is the prod-

uct of arterial oxygen content and cardiac output. Arterial oxygen content is deter-

mined by Hb concentration, SpO2, and oxygen dissolved in blood (PaO2 × 0.003 mL/

mmHg O2/dL blood) [29], whereas cardiac output is determined by HR and stroke vol-

ume [30]. Of these determinants of oxygen delivery, we were able to measure Hb, HR,

SpO2, and PaO2.

Red blood cell (RBC) transfusion to improve tissue oxygen delivery is a common ICU

intervention administered to approximately 1/3 of critically ill patients [31]. However,

this practice still remains controversial due to the potential complications of transfu-

sion (e.g., transfusion-related acute lung injury, altered coagulation, or infections) [32],

as well as studies indicating that the restrictive vs liberal use of RBC transfusions may

result in similar rates of mortality [33–35] and ischemic events [35]. Importantly,

neurological outcomes have not been assessed in these large randomized trials of trans-

fusion thresholds. This issue is further complicated by a lack of understanding of the

neurophysiologic effects of RBC transfusion on cerebral oxygenation. In patients with

severe traumatic brain injury, mean pre- and post-transfusion Hb concentrations were

significantly different, but this significant difference was not observed for pre- and

post-rSO2 recordings [36]. This may have been due to the small sample size and poten-

tially underpowered (n = 19) analyses. Our study on critically ill, non-brain-injured pa-

tients demonstrated a significant positive association between Hb concentration and

rSO2. This inconsistency between studies may be partially explained by different patient

populations being assessed, as patients with traumatic brain injury may have structural

etiologies that interfere with the NIRS signal, such as cerebral contusions or hemato-

mas. Our finding raises the possibility that increasing Hb concentrations within a thera-

peutic window may be a component of developing a clinical algorithm to optimize

rSO2 during critical illness. However, the effects of RBC transfusions on rSO2, as well

as subsequent clinical outcomes, need further analysis.

With regard to cardiac output, we demonstrated a significant positive association be-

tween HR and rSO2. This might suggest that medications that increase heart rate (e.g.,

dobutamine) could be part of an algorithm to increase cerebral oxygenation. However,

it is important to acknowledge that our study did not have data on stroke volume to

directly calculate cardiac output. Future studies may wish to utilize non-invasive assess-

ments of cardiac output in order to directly assess the association between cardiac out-

put and rSO2.

Clinicians routinely depend on data derived from pulse oximetry to monitor tissue

oxygen saturation in critically ill patients. However, these recordings only provide infor-

mation regarding the arterial blood content from peripheral tissues. In our study, there

was a negative association between rSO2 and SpO2. Furthermore, SpO2 was not identi-

fied as a significant predictor of rSO2 when controlling for the other determinants of

oxygen delivery. This may suggest that pulse oximetry may inadequately assess cerebral

oxygenation, which further argues for the need for routine monitoring of rSO2 at the

bedside. Alternatively, this non-significant finding may simply reflect the restricted

range of SpO2 levels collected among patients, as arterial oxygen saturation is tightly

regulated within the ICU. Due to the small sample size, our analysis may have been

underpowered to detect this effect in a multivariate regression model and further ana-

lysis is warranted. Furthermore, as mentioned previously, the NIRS signal is mostly
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comprised of venous oxygenation [5]. Therefore, rSO2 may be more related to intracra-

nial venous oxygen saturation, partially explaining the negative association observed

with SpO2, and may reflect the interplay between oxygen delivery and consumption.

Although rSO2 has been shown to be positively correlated with central venous oxygen

saturation previously [37], we had an insufficient sample of central venous oxygen sat-

uration data to assess this relationship in our regression analysis.

In the present study, we did not find a significant association between rSO2 and

PaO2. Since the oxygen-hemoglobin dissociation curve becomes relatively flat when

oxygen saturation is > 90% and PaO2 is above 80 mmHg (i.e., sigmoid shape), increases

in PaO2 have relatively little impact on saturation/content (i.e., inhaled oxygen will in-

crease PaO2 levels but there will only be a minimal increase in blood oxygen content)

[38]. Our cohort had median SpO2 and PaO2 values well above these values mentioned

previously, which may partially explain the observed non-significant association. How-

ever, had a larger range of values been collected for PaO2 and SpO2, it stands to reason

that a significant association(s) may have been observed with rSO2 due to the substan-

tial dependence of oxygen content on PaO2, which would have also been reflected by

subsequent changes in SpO2 levels.

PaCO2 may be directly associated with rSO2 in critically ill patients

Respiratory gases, such as PaCO2, have substantial effects on the radius of cerebral

blood vessels (e.g., increases in PaCO2 cause cerebral vasodilation, thus increasing

CBF) [39]. However, metabolic acidosis is frequently compensated by spontaneous or

controlled hyperventilation during the resuscitation of critically ill patients. As cerebral

perfusion is not routinely monitored at the bedside in critically ill patients, the effects

of hyperventilation, and subsequent hypocapnia, remain unclear. Since we found a sig-

nificant positive association between PaCO2 and rSO2, prolonged hyperventilation dur-

ing critical illness may result in the unintended consequence of compromised cerebral

perfusion and potentially secondary neuronal injury.

Physiological parameters NOT associated with rSO2: PaO2 and MAP

We describe above the possible explanation(s) for the non-significant association be-

tween rSO2 and PaO2. A similar nonsignificant association between MAP and rSO2

was also observed, which may be related to intact cerebral autoregulation as CBF is

preserved through a range of MAP values (i.e., 50–150 mmHg) [40, 41]. A limitation of

the current study is that the integrity of cerebral autoregulation is not captured in this

cohort.

Limitations and future directions

Analyzing the physiological determinants of rSO2 in our cohort of patients was limited

by our single-center design and by the small number of patients that underwent

high-frequency vital sign recording. Therefore, our findings will need to be validated

among a larger cohort of critically ill patients. Additional measures of tissue oxygen-

ation (e.g., SjvO2, lactate) would ideally be incorporated into the regression analysis.

However, these lab tests were sent infrequently during the 24-h period of NIRS record-

ing such that the data could not be used. Furthermore, quantifying patient cardiac
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output, rather than recording only heart rate, may provide important information re-

garding the NIRS association with determinants of oxygen delivery. As stated previ-

ously, the NIRS signal is primarily derived from venous circulation (75–80%) [5]. Our

analysis included only arterial blood gas data, which may partially explain why ~ 50% of

the variance of the NIRS signal was not accounted for by our regression model. Fur-

thermore, given our small sample size, we could not adjust for other potentially rele-

vant covariates that might influence cerebral oxygenation, such as admitting diagnosis,

medications, or medical history. Additionally, due to the heterogeneity at which our

data was collected (e.g., continuous recording vs clinically ordered), we reduced our

data set to a 24-h mean per patient. Future analyses may want to systematically collect

all physiological data and conduct a mixed effects regression analysis to account for re-

peated measurements and potential individual variability among ICU patients. Further-

more, the right and center sensors largely agreed throughout the recording period,

which suggests that one sensor in the middle of the forehead may be adequate. How-

ever, further research is needed to investigate if the center placement detects focal

desaturations that may be clinically meaningful (e.g., right-sided stroke) and better de-

tected using traditional two bilateral sensors, which will be imperative to developing a

target algorithm to optimize rSO2. Lastly, age had a significant negative association

with rSO2 and will need to be included in future analyses to adjust for this age-related

decrease in cerebral perfusion. However, the exact age-related mechanism(s) associated

with this decrease in rSO2 is unclear. Despite these limitations, however, we identified

three predictors (i.e., PaCO2, HR, Hb) of the NIRS-derived rSO2 signal that are clinic-

ally established determinants of oxygen delivery, which provide evidence that NIRS

may be a suitable marker for monitoring cerebral oxygenation during critical illness.

Conclusions
Our analysis provides evidence that the NIRS-derived rSO2 signal is a viable neuromo-

nitoring modality to assess cerebral oxygenation during critical illness, as this signal

was predicted by known and reliable clinical determinants of oxygen delivery during

the first 24 h of critical illness. Further elucidation of the determinants of the rSO2 sig-

nal may be useful in developing resuscitation algorithms designed to optimize cerebral

oxygenation, an important therapeutic target among critically ill patients. However,

clinically relevant covariates will need to be modeled in future analyses.

Endnotes
1Another assumption of regression is linearity for which only one of the predictors vi-

olated this assumption, SpO2. Therefore, we also tested a version of the simultaneous

model that included the linear and quadratic terms for SpO2. In this model, both linear

and quadratic terms for SpO2 were significant predictors of rSO2, b = 48.47,

t(33) = 2.314, p = 0.027, b = − 0.26, t(33) = − 2.333, p = 0.026, respectively. Because the

quadratic term would qualify the linear term, these results indicate that rSO2 is lower

at moderate levels of SpO2 than at higher or lower levels of SpO2 arterial. However,

complex terms like interactions and polynomials require larger sample sizes for stabil-

ity. Consequently, we interpret these results with caution and await replication of this

finding with a larger sample.
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Additional files

Additional file 1: Figure S1. Repeated measures Bland Altman plot indicating that the pooled data across the
center and right sensors display a high level of agreement. Note. The red dotted lines indicate the 95% limits of
agreement (i.e., the two sensors mean minus 1.96 SD and plus 1.96 SD). The black line represents the mean (i.e.,
bias) of recordings across sensors. Black dots represent pooled recordings of regional cerebral oxygenation across
10 intensive care unit patients. As an illustrative example, the Bland Altman analysis indicated that the mean
difference (i.e., bias) between the sensors was − 0.31, which indicates that the right sensor on average records
0.31% higher than the center sensor. Furthermore, the lower and upper limits of agreement (− 7.45% and 6.84%,
respectively) were minor, indicating that the sensors display high agreement. (JPEG 2129 kb)

Additional file 2: Figure S2. Histograms of high-frequency hemodynamic variable recordings used to remove
anomalous data before conducting regression analysis. Diastolic BP = diastolic blood pressure; MAP =mean arterial
pressure; systolic BP = systolic blood pressure; rSO2 = regional cerebral oxygenation; SpO2 = arterial oxygen
saturation. (PDF 37 kb)

Additional file 3: Figure S3. Matrix of the pooled correlation analysis of all predictors of regional cerebral oxygenation
included in the simultaneous regression model. This plot provides visual representation of the associations
between various hemodynamic/physiological parameters. The direction of the association is represented by
the color (blue = positive; red = negative), and the strength is indicated by shading (dark = strong; light =
weak). Each colored square has corresponding text, which represents the p value for the correlation analysis
between the column and row parameter. The asterisks indicate significant Pearson correlations coefficients
(p < 0.05). (JPG 7206 kb)

Additional file 4: Figure S4. Bar graph illustrating that amount of missing values per high-frequency vital sign
recording. Diastolic BP = diastolic blood pressure; MAP =mean arterial pressure; systolic BP = systolic blood pressure;
rSO2 = regional cerebral oxygenation; SpO2 = arterial oxygen saturation. (PDF 22 kb)
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