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Abstract

Background: Sepsis-associated immune dysregulation, involving hyper-inflammation
and immunosuppression, is common in intensive care patients, often leading to
multiple organ dysfunction and death. The aim of this study was to identify the main
driving force underlying immunosuppression in sepsis, and to suggest new therapeutic
avenues for controlling this immune impairment and alleviating excessive pathogen
load.

Methods: We developed two minimalistic (skeletal) mathematical models of pathogen-
associated inflammation, which focus on the dynamics of myeloid, lymphocyte, and
pathogen numbers in blood. Both models rely on the assumption that the presence of
the pathogen causes a bias in hematopoietic stem cell differentiation toward the
myeloid developmental line. Also in one of the models, we assumed that continuous
exposure to pathogens induces lymphocyte exhaustion. In addition, we also created
therapy models, both by antibiotics and by immunotherapy with PD-1/PD-L1
checkpoint inhibitors. Assuming realistic parameter ranges, we simulated the pathogen-
associated inflammation models in silico with or without various antibiotic and
immunotherapy schedules.

Results: Computer simulations of the two models show that the assumption of
lymphocyte exhaustion is a prerequisite for attaining sepsis-
associated immunosuppression, and that the ability of the innate and adaptive immune
systems to control infections depends on the pathogen’s replication rate. Simulation
results further show that combining antibiotics with immune checkpoint blockers
can suffice for defeating even an aggressive pathogen within a relatively short
period. This is so as long as the drugs are administered soon after diagnosis. In
contrast, when applied as monotherapies, antibiotics or immune checkpoint
blockers fall short of eliminating aggressive pathogens in reasonable time.

(Continued on next page)

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Intensive Care Medicine
Experimental

Gillis et al. Intensive Care Medicine Experimental            (2019) 7:32 
https://doi.org/10.1186/s40635-019-0260-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s40635-019-0260-3&domain=pdf
mailto:agur@imbm.org
http://creativecommons.org/licenses/by/4.0/


(Continued from previous page)

Conclusions: Our results suggest that lymphocyte exhaustion crucially drives
immunosuppression in sepsis, and that one can efficiently resolve both
immunosuppression and pathogenesis by timely coupling of antibiotics with an
immune checkpoint blocker, but not by either one of these two treatment
modalities alone. Following experimental validation, our model can be adapted to
explore the potential of other therapeutic options in this field.

Keywords: Simulations, Dynamic model, T lymphocyte exhaustion, Immunosuppression,
Checkpoint blockers, Hyper-inflammation, Hematopoietic stem cell, Programmed cell
death protein 1, PD-1, Pathogen

Background
Proper inflammatory responses provide broad-spectrum protection against infections,

and orchestrate long-term adaptive immunity toward specific pathogens. In contrast,

hyper-inflammation, resulting in major pathogenicity from overzealous immune re-

sponse, can inflict severe tissue damage, multiple organ dysfunction, and ultimately

death [1–4]. Immunosuppression can follow hyper-inflammation to control the poten-

tial damage to the host, by activating an anti-inflammatory response, which can occur

regardless of whether or not the initial cause of the inflammation (e.g., an invading

pathogen) has been resolved [5]. In their mild form, both pro- and anti-inflammatory

responses are essential for the host’s protection. During a mild infection, a measured

pro-inflammatory phase is sufficient for pathogen clearance, whereby a subsequent

anti-inflammatory phase returns the immune system to homeostasis. However, when

the infection is more severe, it can cause dysregulation of the immune response, put-

ting the individual in danger of multi-organ failure (MOF) and death, either because of

severe inflammation or, at a later stage, due to unresolved infection [1].

Sepsis-associated immune dysregulation involving hyper-inflammation and immuno-

suppression is common in intensive care patients [1]. Despite significant advances in

our understanding of the immune system, progress in the treatment of sepsis has been

rather modest [2]. Recently, however, the achievements of targeted cancer immunother-

apy have been extrapolated to the realm of sepsis with varying degrees of success [5–8].

Several immunotherapies have undergone clinical trials in sepsis with promising re-

sults, including recombinant interleukin-7 (IL-7), interferon-gamma (IFN-γ), Fms-like

tyrosine kinase 3 ligand, and chimeric antigen receptor T cell (CAR-T) [5]. Notably,

there is a growing appreciation of the role of immunosuppressive mechanisms in caus-

ing or exacerbating sepsis, especially that of T cell exhaustion during chronic antigenic

stimulation. A therapy that modulates pathways operating in T cell exhaustion—for ex-

ample, antibodies that bind to the programmed cell death 1 receptor (PD-1) on T

lymphocyte surface or its ligand (PD-L1)—can reverse this dysfunctional state and re-

invigorate immune responses. This understanding has led researchers to examine the

potential of immune checkpoint blockers, such as PD-1/PD-L1 blockers, in treating

sepsis [5, 9].

The objective of this study was to help streamline these new therapeutic approaches

by identifying the main driving force underlying immunosuppression in sepsis, and by

investigating possible therapeutic modalities deemed to affect this driving force. Due to

the convoluted nature of the different negative and positive feedback effects involved in
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the key interactions in this system, analysis by naked intuition is not sufficient for dis-

entangling the drug/disease/immunity complex. In contrast, a comprehensive mathem-

atical model, formalizing the mechanism of action of the drug in conjunction with the

pertinent host and disease processes in one succinct computational framework, would

enable analysis of the yet unexplained phenomena associated with sepsis and its regula-

tion. The major concept underlying the mathematical modeling of a complex biological

system is parsimony: only the most important forces in the system are formulated, as-

suming that other forces have little influence on the system’s pertinent dynamics, and

therefore do not add quality. Having formulated and analyzed the model, it is then vali-

dated by independent data, in order to test the assumption that the forces taken ac-

count of are the most relevant to the investigated dynamics. Only if model predictions

are refuted, then the model is extended by additional assumptions. Models of this kind

have proven useful for this purpose in a wide range of medical fields, by offering a

broader understanding of the pathologies being studied, and by allowing to examine a

diverse set of targeted interventions in the complex systems at hand [10].

Thus far, mathematical modeling in sepsis has served to explore various immunologic

effects. These include the effect of the intracellular toll-like receptor 4 (TLR4) on the

shift of equilibrium between the pro- and anti-inflammatory signaling cascades, the

effect of cytokine perturbations on the mortality rate of the pathogen, etc., [11–13].

However, previous mathematical models developed for sepsis do not directly deal with

the immunosuppression issue, and few of them use the level of simplicity suggested

here for crystalizing the decisive system dynamics [14, 15].

In this work, we developed models of sepsis-associated inflammation, and used them

to investigate potential drivers and inhibitors of immunosuppression. Our chosen mod-

eling method consciously adopts a low-resolution outlook, building what one could

dub a “skeletal model,” that is, a model that incorporates only the bare bones of the

system. By doing so, we could more easily isolate our chosen variables and analyze the

overarching dispositions of the system. Therefore, these models deliberately attempt to

include the minimal number of compartments while retaining the fidelity of descrip-

tion, allowing us to achieve our stated goal. Simulations of these parsimonious sepsis

models suggest that immunosuppression can occur only if the persistent pathogen

causes superfluous T cell death, and that one can prevent sepsis-associated immuno-

suppression and prolonged pathogen presence by timely coupling antibiotics with im-

mune checkpoint blockers, but not by either one of these two treatment modalities

alone.

Models and results
We aimed to develop simple mathematical models for deciphering the major forces

causing immunosuppression in sepsis and improving treatment approach toward allevi-

ating the syndrome and eliminating the pathogen. Underlying our model development

was the assumption that immunosuppression in septic patients is a result of dynamic

interactions between the pathogen and cells in two hematopoietic lines—myelopoiesis

and lymphopoiesis [16, 17]. Our rationale was to develop a skeletal model—model

V1—and to test it for retrieving immunosuppression associated with pathogenic infec-

tion. If model V1 failed to depict this desired scenario, we would then modify it and de-

velop model V2, containing a key change to model V1. In model V2, pathogen-driven
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apoptosis of lymphocyte plays a major role. The difference between these two sets of

results is what points to the essentiality of cell death in the etiology of immunosuppres-

sion in sepsis.

Model V1

In this model, we assumed that the invading pathogen (P) is detected and disrupted by

myeloid cells (M; neutrophils and macrophages), which die by pathogen phagocytosis

[16–18]. Since the binding of pro-inflammatory cytokines—among them granulocyte

colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating fac-

tor (GM-CSF)—depends on myeloid abundance, significant neutrophil mortality in the

peripheral blood during unremitting infection can result in increased circulation of free

G-CSF to the bone marrow [19]. Ultimately, this leads to binding of pro-inflammatory

cytokines to hematopoietic stem cells (HSCs, H), causing them to produce higher levels

of myeloid cells at the expense of the lymphoid lineage, by shifting their differentiation

ratio towards the myeloid lineage [20]. The pathogen itself also causes secretion of G-

CSF and GM-CSF, by presenting on its cell surface characteristic molecules termed

pathogen-associated molecular patterns (PAMPs) that are recognized by mature mye-

loid cells in blood, as well as by other cells in the body [21]. The myeloid cells are in-

duced to secrete selected cytokines, such as IFN-γ, tumor necrosis factor-α (TNF-α),

etc., which regulate activation of the adaptive immune response, finally providing pro-

tection to the host. In our model, we have compressed these processes into one—the

bias caused by the pathogen in the differentiation of HSC toward the myeloid develop-

mental line.

The pool of HSCs is kept in balance in the bone marrow by their circulation in the

bloodstream to find new niches, sometimes at distant locations in the body [22]. Based

on this knowledge, the model treats the size of the HSC pool as a constant parameter.

We further assumed that when the innate immune system is unable to eliminate the

pathogen, it activates a certain sub-population of circulating naïve T lymphocytes (L)

[23]. Our model takes account of the mechanism of this activation, mediated mainly by

antigen presenting cells (APCs), such as macrophages and dendritic cells in the myeloid

compartment. This sub-population then undergoes clonal expansion [24, 25]. Recently,

it has been reported that B cells play a more important role in sepsis than previously

thought [26]. Conceptually, the effect of these cells can be readily incorporated into our

lymphocyte variable, L, which for the sake of parsimony was not split into the various

relevant lymphocyte subpopulations.

The pathogen (P) itself was taken as proliferating within the organism up to its max-

imum carrying capacity, that is, according to a logistic growth function (see Add-

itional file 1 and, e.g., [12]). In addition, we assumed that myeloid cells and lymphocytes

all the while continually kill the pathogen. We hypothesized, for simplicity, that the patho-

gen can decrease to exceedingly low levels but cannot be completely eliminated, so that it

can recover when the immune system is suppressed. Note, however, that our “pathogen”

variable does not necessarily represent the same pathogen throughout the entire time-

period simulated. Rather, this variable can stand for re-emergence of the previous patho-

gen, e.g., from organs or tissues where antibiotics penetrate poorly, or for a new pathogen

hitherto not encountered by the patient’s immune system.
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We formed a model, succinctly describing all the effects noted above (model V1); the

model is depicted in Fig. 1.

Following the above diagram, we designed a set of differential equations, which for-

mulate the processes described in the model (Table 1).

We divided pathogens into three categories, which vary in their proliferation rate

(labeled pP): mild (pP = 1), moderate (pP = 1.5), and aggressive (pP = 2). Figure 2

shows results for model V1, illustrating dynamics of the system over six weeks for

the three main populations of interest: pathogen, lymphocyte, and myeloid cells.

We found that the immune system is able to permanently eliminate mild patho-

gens, thereafter approaching homeostasis levels (Fig. 2a), while moderate (Fig. 2b)

and aggressive pathogens (Fig. 2c) manage to recover once the immune cells return

to their homeostatic levels, stimulating another immune response. The latter two

cases approach a limit cycle, namely oscillations of the three cell populations, hav-

ing the same phase and almost a constant amplitude, with no change in the aver-

age abundance of the pathogen or the blood cells. We ran all simulations using

MATLAB R2016a. All cell populations are in units of 103 cells/μl. All time units

are hours.

Clearly, then, model V1 does not account for persistent pathogenesis accompanied by

immunosuppression; the latter is expected to manifest as lymphocytes’ gradual dimin-

ution. Although the lymphocyte compartment suffers from low supply from the bone

marrow relative to normal (see above), this is compensated for by the enhanced activa-

tion of naive T cells by APCs in the myeloid compartment. We therefore examined pos-

sible alterations to this model, to reflect the phenomenon observable in patients.

Model V2

Having examined various modeling options and their associated system’s dynamics, we

finally chose to incorporate one more effect in the above-described skeletal model: T

Fig. 1 A graphical display of Model V1. The model is based on four assumptions: 1. HSCs (H) continually
differentiate into myeloid cells (M; neutrophils, macrophages) and lymphocytes (L). 2. The presence of
pathogen (P) biases HSC differentiation towards the myeloid lineage. 3. Lymphocytes encounter myeloid
cells that have phagocytized antigen, and expand their population in response. 4. Myeloid cells and
lymphocytes inhibit pathogen growth. See Additional file 1 for the equations and parameters for Model V1.
Regular, blunted, and dashed arrows indicate activation, inhibition, and differentiation, respectively
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cell exhaustion. Thus, in the new model (model V2), we added the assumption that

during prolonged infection, persistent pathogen presence induces T cell exhaustion,

which over time inhibits the expansion of lymphocytes [7]. Figure 3 illustrates our more

complex model V2, with arrows 1–4 identical to those in model V1 and arrow 5 repre-

senting the assumption of T cell exhaustion by the pathogen.

It was now also necessary to modify our equations to fit the new model. Table 2 con-

tains the equations formulated for model V2. Note that the only change made to the

initial equations is the addition of the exhaustion function and its incorporation in the

lymphocyte equations.

Figure 4 shows simulation results of model V2. As in model V1, here in addition, the

immune system is able to extinguish mild pathogens, while moderate and aggressive

pathogens manage to recover, generating another immune stimulation and a new sup-

pression of the pathogen. However, in contrast to the results of model V1, we note that

when the pathogen is moderate or aggressive, the simulations of model V2 show a pro-

gressively weakening lymphocyte population. In fact, for aggressive pathogens, the

system quickly abandons the limit cycle and approaches stability of myeloid cell num-

bers simultaneously with progressive lymphocyte decay, in keeping with the paradigm

that hyper-inflammation and immunosuppression can occur simultaneously [5].

Interestingly, Fig. 4 shows that under moderate pathogen proliferation rates, the

pathogen oscillates almost steadily between low and high abundance. Under larger

pathogen proliferation rates, its abundance stays high and slowly increases. Note that

the value of P at t = 0, i.e., the initial level of the infection, is a less influential factor

than the pathogen proliferation rate (pP). To illustrate this, we simulated the model as

in Fig. 4 above, except that the initial pathogen population size was increased to P = 10

at t = 0 (rather than P = 3 in Fig. 4). Simulation results with initial pathogen at P = 10

are qualitatively almost identical to those from Fig. 4, demonstrating that the virulence

of the pathogen is more important than the initial pathogen load (not shown; see Add-

itional file 2).

In the next stage, we used model V2 for studying the effect of different treatment

modalities on eliminating the pathogen, and on alleviating the immunosuppression. In

Fig. 5, we show simulation results of model V2 for the effects of PD-1/PD-L1 check-

point blockers on aggressive pathogens. We assumed that immunotherapy by PD1/PD-

Table 1 Equations for model V1. Parameter definitions and values: HSC population, H = 0.5;
homeostasis probability of HSC differentiation into a myeloid cell, aM = 0.2; myeloid death rate,
μM = 0.025; lymphocyte proliferation rate, pL =0.2; lymphocyte death rate, μL = 0. 4; pathogen
proliferation rate, pP values vary. Pathogen killing rate by myeloid cells, κM = 0.6; pathogen killing
rate by lymphocytes, κL = 1; HSC skew regulator, α = 0.8; rate of APC stimulation of
lymphocytes, β = 0.2. See Additional file 1 for a concise summary and explanation of the equations
and parameters for all models presented in this article

Variable/function Equation Initial value

Myeloid cells (M) dM
dt ¼ f 1ðPÞ � aMH−μMM M(t = o) = 4

Lymphocytes (L) dL
dt ¼ ð1− f 1 � aMÞH þ f 2ðMÞ � pLL−μLL L(t = o) = 2

Pathogen (P) dP
dt ¼ pPPð1− 1

P∞
Þ−κMM P

kþP −κLL
P

kþP
P(t = o) = 3

HSC differentiation skew f 1ðPÞ ¼ 1þ α
aM
P

1þP
f1(t = o) = 1

APC stimulation of lymphocytes f2(M) = 1 + β(M −M0) f2(t = o) = 1
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L1 blockers has the effect of halting the process of T cell exhaustion and enabling

lymphocyte reinvigoration. This assumption was formalized in the equations as an im-

mediate elimination of the positive element in our exhaustion function, exh, so it be-

came dexh dt ¼ −μexhexh (see Table 2), allowing the remaining negative linear element to

slowly reduce it to zero. Observe that this is equivalent to a gradual reversion back to

the equations of model V1, which as stated above does not include lymphocyte

exhaustion.

Moreover, for simplicity, we assumed that once the immunotherapeutic drug is ap-

plied, its effect persists throughout the 6 weeks’ follow-up period (see Additional file 1

for details of the mathematical model formulation of this effect).

First, we wished to check whether the timing of immunotherapy treatment could de-

termine the fate of the system. To do so, we applied a similar immunotherapy in differ-

ent time points during sepsis of the same “patient.” Figure 5 suggests that treatment by

checkpoint blockers alone can relieve the immunosuppression and reduce the myeloid

Fig. 2 Simulation results of model V1 for pathogens differing in growth rate. Results are shown for three
cases of pathogen growth rate, pP: amild pathogens (pP = 1); bmoderate pathogens (pP = 1.5); c aggressive
pathogens (pP = 2). Blue, red, and black lines indicate myeloid cells (M), lymphocytes (L), and pathogen (P), respectively
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overflow, but cannot annihilate the most aggressive pathogens simulated in this ex-

ample. The results in Fig. 5 underline a therapeutic window in which the immunother-

apy can be most efficacious. When treatment is administered as late as 400 h after

diagnosis of sepsis, there is some late improvement and the immune system eventually

recovers, but the patient is exposed to continuous infection and hyper-inflammation by

myeloid cells for an unreasonably long period and therefore the recovery is too slow to

be clinically meaningful. The dynamics of the immune cells and the pathogen are dif-

ferent upon an earlier immunotherapy application. Treatment at 300 h causes pathogen

levels to fall more sharply, patients return to an oscillatory state within reasonable time,

but are not cured. Treatment at 200 h is sufficient to prevent pathogens from consist-

ently sustaining a high level at all times and instead maintains the oscillatory state with

lymphocyte numbers slowly recovering, while treatment at 100 h enables to prevent

the initial drop in lymphocytes and the overshoot in myeloid cells.

Above we noted that under immunotherapy alone, the aggressive pathogen would

never be fully defeated, since it is capable of recovery once immune cells naturally re-

turn to their initial levels. Remembering that antibiotics are the first line drugs for sep-

sis, we also examined the effect of several different protocols of antibiotics applied as

monotherapy, or in combination with immunotherapy [27]. The first protocol consists

of efficacious antibiotics, i.e., directed to the patient’s specific pathogen, administered

almost as soon as the initial infection is detected (20 h). The second protocol simulates

a more realistic situation, where several days are needed for an accurate diagnosis of

the pathogen, and so the antibiotics administered at first (20 h) are of a less efficacious,

broad-spectrum type. However, at 250 h, a targeted antibiotic drug is administered, re-

placing the weaker drug. The term “targeted” is used for pathogen-specific antibiotics,

that is, ones that were developed to target a certain pathogen rather than to be effective

against a wide variety; targeted antibiotic treatment is usually considered to be more ef-

ficacious. The reason these drugs are administered later in our “realistic scenario” sim-

ulations (Fig. 6d–f ) is that time must be allowed for diagnosis. In these simulations, we

also assumed for simplicity that once an antibiotic drug is applied, its effect remains

Fig. 3 A graphical display of Model V2. The only change from model V1 (see Fig. 1) is the addition of effect
5, by which persistent pathogen induces lymphocyte exhaustion, via suppression of HLA-DR expression in
APCs or through the PD-1/PD-L1 pathway. Effectively, exhaustion in the model manifests itself as an increased
mortality rate of lymphocytes. See Additional file 1 for the equations and parameters of model V2. Regular
arrows indicate activation; blunted arrows indicate inhibition; dashed arrows indicated differentiation
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steady throughout the patient’s stay in the intensive care unit (ICU; ca. 6 weeks). This

simulation also represents multiple applications of the same antibiotic drug. The for-

mulation of the antibiotics’ effect is a reduction in the pathogen’s proliferation rate, pP
(see Table 2) by 20% for the weaker drug and 40% for the stronger drugs.

Figure 6a examines the potential of an early dosing of strong antibiotics to an aggres-

sive pathogen. We see that they temporarily reduce the pathogen to almost elimination

but the decline in lymphocytes allows the pathogen to recover and achieve oscillations

at an amplitude that could be harmful to the patient. This is still qualitatively a better

result than no treatment, where the pathogen oscillates with non-decaying amplitudes

before converging upon a permanent high level (compare to Fig. 4c). How will a com-

bination with of immunotherapy affect the prognosis? Figure 6b, c shows results for

treatment of strong antibiotics, combined with a PD1/PD-L1 blocker applied at two al-

ternative time intervals. These results indicate a significant reduction of the pathogen

with occasional small spikes. In addition, the rise in myeloid cells is kept at bay and

there is no visible influence of the timing of immunotherapy application. Figure 6d–f

shows results for the more realistic antibiotics protocol we devised (see above), which

includes weak antibiotics at the early stages but delays the strong antibiotics. We see in

Fig. 6d that without immunotherapy, the result is oscillations, similar to those in

Fig. 6a—the pathogen is somewhat weakened but is not eliminated. Adding immuno-

therapy following the nonspecific antibiotics (Fig. 6e, f ) significantly hampers the path-

ogen’s recovery and, following application of the strong antibiotics, we see that with

early onset of immunotherapy, this treatment is no less efficacious than our optimistic

scenario of early strong antibiotics with early immunotherapy (compare Fig. 6f to c).

This demonstrates how the immunotherapy, by reinvigorating the exhausted lympho-

cytes, can significantly contribute to the treatment. With administration of immuno-

therapy sufficiently early during the waiting time until specific antibiotic drug is

identified, T lymphocytes increase in numbers to become more effective in eliminating

the invading pathogen. The more specific antibiotic drug meets a less abundant patho-

gen and a more vigorous cellular immunity. Therefore, its effect, combined with that of

Table 2 Equations for model V2, which differs from model V1 in having an additional assumption
of lymphocyte exhaustion process. Parameter definitions and values: HSC population, H = 0.5;
homeostasis probability of HSC differentiation into a myeloid cell, aM = 0.2; myeloid death rate,
μM = 0.025; lymphocyte proliferation rate, pL =0.2; lymphocyte death rate, μL = 0. 4; pathogen
proliferation rate, pP values vary. Pathogen killing rate by myeloid cells, κM = 0.6; pathogen killing
rate by lymphocytes, κL = 1; HSC skew regulator, α = 0.8; rate of APC stimulation of
lymphocytes, β = 0.2. Exhaustion effect increases in presence of pathogen. Rate of increase in
exhaustion effect, γ1 = 0.005; degree to which pathogen affects onset of exhaustion, γ2 = 100; rate
of dissipation of exhaustion effect, μexh = 0.002. See Additional file 1 for a concise summary and
explanation of the equations and parameters for all models presented in this article

Variable/function Equation Initial value

Myeloid cells (M) dM
dt ¼ f 1ðPÞ � aMH−μMM M(t = o) = 4

Lymphocytes (L) dL
dt ¼ ð1− f 1 � aMÞH þ f 2ðMÞ � pLL−ð1þ exhÞ � μLL L(t = o) = 2

Pathogen (P) dP
dt ¼ pPPð1− 1

P∞
Þ−κMM P

kþP −κLL
P

kþP
P(t = o) = 3

HSC differentiation skew f 1ðPÞ ¼ 1þ α
aM
P

1þP
f1(t = o) = 1

APC stimulation of lymphocytes f2(M) = 1 + β(M −M0) f2(t = o) = 1

Exhaustion function dynamics dexh dt ¼ γ1
1þe−γ2 ðP−1Þ −μexhexh exh(t = 0) = 0
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the immunotherapy, can eliminate the highly proliferative pathogen despite the delay in

its application. One can view this approach as “buying the patient time” to allow a par-

tial recovery, while being more accurately diagnosed. Note also that under the second,

more realistic antibiotics protocol, results are significantly better with checkpoint

blockers administered at 100 h than at 200 h. This illustrates the importance of timely

onset in immunotherapy.

Discussion and conclusions
According to our results, the key point of vulnerability of the immune system when

facing aggressive pathogens is the potential for lymphocyte exhaustion [28]. This is the

important result of our parsimonious modelling. Without the assumption that the per-

sistent pathogen presence induces T cell exhaustion, the simulation results with realistic

parameter values failed to reflect cases in which immunosuppression occurs (model

V1). In other words, T cell exhaustion caused by the pathogen is the simplest known

Fig. 4 Simulation results for model V2. a Mild pathogens (pP = 1) are quickly eliminated. b Moderate pathogens
(pP = 1.5) induce regular oscillations of the pathogen with a slowly declining lymphocyte population. c Aggressive
pathogens (pP = 2) cause a rapid lymphocyte decline, allowing the pathogen to remain at a constant high level
(as opposed to the result in Fig. 2c). Blue, red, and black lines indicate myeloid cells (M), lymphocytes (L), and
pathogen (P), respectively
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Fig. 5 Simulation results of model V2 for treatment with PD-1/PD-L1 checkpoint blockers at different time
points during sepsis. Blue, red, and black lines indicate myeloid cells (M), lymphocytes (L), and pathogen (P),
respectively. Vertical straight lines indicate the time at which immunotherapy is administered: a 400 h; b 300 h;
c 200 h; d 100 h

Fig. 6 Simulation results for treatment with different protocols of antibiotics and their combination with
immunotherapy. a Targeted antibiotics alone. b Targeted antibiotics followed by immunotherapy after 200 h. c
Targeted antibiotics followed by immunotherapy after 100 h. d Targeted antibiotics followed by targeted
antibiotics after 250 h. e Targeted antibiotics followed by immunotherapy after 200 h and targeted antibiotics
after 250 h. f Targeted antibiotics followed by immunotherapy after 100 h and targeted antibiotics after 250 h.
Blue, red, and black lines indicate myeloid cells (M), lymphocytes (L), and pathogen (P), respectively. Dotted
vertical lines indicate time of administration of strong targeted antibiotics (reduction of 40% in pathogen
growth rate, pP, to 1.2); straight vertical gray lines indicate time of administration of immunotherapy; dashed
vertical lines indicate time of administration of weak broad spectrum antibiotics (reduction of 20% in pathogen
growth rate, pP, to 1.6)
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mechanism (e.g., [29]), which can drive sepsis-mediated immunosuppression. One can

also conclude that myeloid cells alone are insufficient for alleviating severe sepsis and

reasonable levels of lymphocytes are essential for containing the pathogen. In model V2,

ongoing pathogen presence mediates lymphocyte exhaustion. It should however be

pointed out that other conditions exist which can play a similar role. In particular, con-

ditions such as acute pancreatitis or post-surgical trauma, via the resultant release of

damage-associated molecular patterns, are liable to induce lymphopenia [30–32]. Due

to our choice of variables and our desire to keep our model “skeletal,” these types of ef-

fects were outside the scope of our consideration.

The results also illustrate the plausibility of concurrent hyper-inflammation and im-

munosuppression, which manifest simultaneously in the myeloid and lymphoid com-

partments. In the event of severe infection, these two syndromes could create a positive

feedback loop, where immunosuppression prevents pathogen elimination, thereby fur-

ther boosting inflammatory activity [1]. Prolonged inflammation may ultimately lead to

catastrophic events of MOF [2].

Our results further show that the immune system is able to eliminate mild pathogens

permanently, while moderate and aggressive pathogens can recover and drive the sys-

tem to oscillatory dynamics of the three cell populations. We believe that this result

merits clinical validation as it can have therapeutic implications.

When exploring the therapeutic option of anti-exhaustion treatment by PD-1/PD-

L1 blockers, we found that with aggressive pathogens, early intervention—which ar-

rests the exhaustion effect—changes the projection for pathogen from constant high

levels to periodic oscillations between escalation and decline. This could reduce the

potential damage to the patient, both from the pathogen itself and from the ensuing

inflammation. The second monotherapy treatment examined, antibiotics, also proved

capable of reducing pathogen levels from constant to oscillatory. From a biological

perspective, the pathogen’s ability to recover under these conditions, can be attributed

to a number of factors: bacteria may survive inside organs or tissues where antibiotics

penetrate poorly, resistant strains may proliferate, or new opportunistic organisms

may cause secondary infection during the periods when the patient’s immune state is

compromised [33].

Combination of antibiotics with checkpoint inhibitors, if administered early enough,

virtually eliminates the pathogen in our model system. In particular, the early adminis-

tration of the immunotherapy is essential for significantly accelerating the recovery of

lymphocytes. These results appear to align with contemporary observations and clinical

reality [27, 34]. Our results show that application of a PD-1 blocker at the earliest clin-

ically permissible time point is the only schedule, out of the four tried, to prevent the

initial drop in lymphocytes and the overshoot in myeloid cells. The reasoning is the

“race of arms” between cellular immunity and the pathogen—the earlier one applies

immunotherapy, the fewer lymphocytes have already been annihilated by the pathogen

and the larger is the potential reinvigoration the applied checkpoint inhibitor can cause

to living but already partly exhausted lymphocytes. However, the clinical limitations of

check-point inhibitors should be noted, in particular the possibility that these drugs

may “overshoot” and induce potentially fatal autoimmune reactions [35].

Another motivation we had in developing the present model was furthering the un-

derstanding of immunosuppression in sepsis. We made a particular effort to build the
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narrowest possible model that could capture this phenomenon. As demonstrated

above, this approach allowed us to identify the key forces in the system—leading us to

the discovery that lymphocyte exhaustion due to pathogen persistence is the crucial

effect required for the model to reflect the pathologies we were studying. However,

the “skeletal model” developed in this work can provide the groundwork for develop-

ing more complex models which might then lend themselves to be personalized. Op-

tions for broadening the model include expanding the hematopoietic differentiation

process by adding intermediary progenitors between HSCs and mature leukocytes

(see, e.g., [36, 37]); considering the separate effects of myeloid derived suppressor cells

(MDSCs) and apoptotic cells [38, 39]; including other types of cells (such as dendritic

cells). Note, however, that while such improvements may enable a better liaison of

personally measured parameters with the mathematical model, we do not expect

them to alter the conclusions drawn in this work. Presently, we examined a few types

of monotherapy and combined treatments, but the model is flexible and may be

adapted to shed light on other therapeutic possibilities as well (see [40, 41] for

examples).

Further potential projects that build on our model also include optimizing the timing

of treatments and fitting the model parameters to patients’ clinical data. Our limited

analysis brought forward here provides some indication as to parameter sensitivity

when personalizing the model to individual patients; a priori, reaction rates that are

pertinent to lymphocyte exhaustion seem to be most sensitive to the propensity to suf-

fer immunosuppression. As well as these possibilities, one could also use our model to

guide the design of clinical trials (e.g., [42]).

We will validate our model’s predictions in several retrospective and prospective

preclinical and clinical trials. First among them is a retrospective clinical trial, val-

idating the numerical accuracy of model-predicted longitudinal blood counts. We

also intend to use this trial for tuning the model’s parameters more finely. The

trial is currently in process, involving a large database of ICU patients (MIMIC-III,

a freely accessible critical care database [43]). Next, we will carry out prospective

preclinical and clinical trials to test the qualitative validity of model predictions. In

the preclinical setting, selection of an in vivo small animal model of human sepsis

and human immune system interaction would enable verification of the mecha-

nisms underlying immunosuppression in sepsis. In addition, we will examine in the

preclinical setting the treatment protocol our study highlights as optimal for severe

sepsis. However, the predictive validity and translational value of animal models for

the medical research in sepsis is a subject of considerable debate, at present: it is

essential to acknowledge that all experimental models have limitations and that an

animal model can never fully replicate all of the features of human disease [44].

Therefore, our aim will be to carry out prospective clinical trials for validating the

superiority of the model-suggested improved regimen, combining immunotherapy

and antibiotics.

Conclusions
The results from our model simulations suggest that the key cause of immunosuppres-

sion in septic patients is lymphocyte exhaustion, and that an early onset of antibiotic

treatment sequenced with an early treatment for blocking T cell exhaustion, such as
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PD-1/PD-L1 checkpoint blockers, can concomitantly alleviate this undesirable effect

and sepsis. In particular, anti-exhaustion treatment can provide the key ingredient for

disease resolution when antibiotics alone are insufficient or when it takes time to find

the best antibiotics to the patient’s specific disease. Following preclinical and clinical

validation, our model can be adapted to explore the potential of other therapeutic

options in this field.
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