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Abstract

Background: Anemia of inflammation (AI) is common in critically ill patients. Although
this syndrome negatively impacts the outcome of critical illness, understanding of its
pathophysiology is limited. Also, new therapies that increase iron availability for
erythropoiesis during AI are upcoming. A model of AI induced by bacterial infections
that are relevant for the critically ill is currently not available. This paper describes the
development of an animal model for AI that is relevant for critical care research.

Results: In experiments with rats, the rats were inoculated either repeatedly or with a
slow release of Streptococcus pneumoniae or Pseudomonas aeruginosa. Rats became ill,
but their hemoglobin levels remained stable. The use of a higher dose of bacteria
resulted in a lethal model. Then, we turned to a model with longer disease duration,
using pigs that were supported by mechanical ventilation after inoculation with P.
aeruginosa. The pigs became septic 12 to 24 h after inoculation, with a statistically
significant decrease in mean arterial pressure and base excess, while heart rate tended
to increase. Pigs needed resuscitation and vasopressor therapy to maintain a mean
arterial pressure > 60mmHg. After 72 h, the pigs developed anemia (baseline 9.9 g/dl
vs. 72 h, 7.6 g/dl, p = 0.01), characterized by statistically significant decreased iron levels,
decreased transferrin saturation, and increased ferritin. Hepcidin levels tended to
increase and transferrin levels tended to decrease.

Conclusions: Using pathogens commonly involved in pulmonary sepsis, AI could not
be induced in rats. Conversely, in pigs, P. aeruginosa induced pulmonary sepsis with
concomitant AI. This AI model can be applied to study the pathophysiology of AI in the
critically ill and to investigate the effectivity and toxicity of new therapies that aim to
increase iron availability.
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Background
Anemia is a hallmark of critical illness, and inflammation is thought to contribute to

the development of anemia in the majority of critically ill patients. Thereby, anemia of

inflammation (AI) is common in the intensive care unit (ICU) [1]. The
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pathophysiology of AI is multifactorial and includes a shortened red blood cell (RBC)

life span caused by erythrophagocytosis [2], as well as a decreased erythropoiesis [3].

Erythropoiesis is impaired due to inflammatory cytokines that decrease erythroid pre-

cursor proliferation and erythropoietin levels [4]. Also, serum iron levels are low in AI

due to increased levels of hepcidin, which is the iron-regulating hormone that is pro-

duced in response to inflammatory cytokines [5]. Hepcidin causes degradation of the

iron exporter ferroportin, resulting in sequestration of iron inside cells and subsequent

low plasma iron [6]. Thereby, in contrast to iron deficiency anemia, AI patients do not

have a lack of iron, but rather a decreased iron availability.

Regardless of the cause, anemia in the critically ill is associated with adverse outcome

[7] and AI occurs early after ICU admission [8]. AI is treated with RBC transfusions. In

sepsis, half of the patients require RBC transfusion within the first 24 h of ICU admis-

sion [8]. However, RBC transfusion is associated with morbidity and mortality in the

critically ill [9], calling for alternative therapies. In the last decade, new therapies to

treat AI by targeting the iron metabolism are in development, such as hepcidin inacti-

vators [10–12], hepcidin production inhibitors [13, 14], interleukin 6 (IL-6) inhibitor

[15], and IL-6 receptor blockers [16–18]. These therapies aim to increase the amount

of iron available for erythropoiesis, which could potentially reduce the amount of trans-

fusions and improve the outcome of critical illness. However, such interventions may

also have drawbacks, such as slow resolution of infection or acquisition of new infec-

tions, as bacteria use iron for their growth [19]. Therefore, new therapies for critically

ill patients that increase iron availability should preferably be tested in models of AI

that are caused by bacterial infections that are relevant for the critically ill. The cur-

rently available AI animal models are mainly non-infectious models, including heat-

killed Brucella abortus [2], zymosan [20], cytokines [11, 21], or peptidoglycan-

polysaccharide [22]. Infectious AI animal models show high variation due to technical

difficulties [23, 24], have only mild anemia [25, 26], or use parasitic infections that are

not relevant for the critically ill [27–30]. Taken together, animal models for AI that

mimic critical care illness are currently limited. Therefore, through a multi-national

European collaboration, we aimed at developing an animal model of AI caused by pul-

monary sepsis, evaluating the advantages and disadvantages of models in rats and pigs.

Methods
Rat experiments

Studies were approved by the Institutional Animal Care and Use Committee of the

Amsterdam University Medical Centers, located at the Academic Medical Center,

Amsterdam, Netherlands. All animal procedures were performed in compliance with

Institutional Standards for Human Care and Use of Animal Laboratory Animals.

Experimental protocol

For all experiments, the bacterial inoculum was prepared as follows: an overnight bac-

terial culture was diluted in fresh medium. The bacteria were cultured to logarithmic

growth phase at 37 °C. Then, the culture was centrifuged and the pellet was washed

and resuspended in sterile saline. This bacterial suspension was diluted to the desired

inoculum concentration, based on the optical density at 600 nm. The inoculum
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concentration was verified by the culture of 10-fold serial dilutions of the inoculum on

agar plates.

Male Sprague-Dawley rats (Envigo, The Netherlands) were anesthetized with 3% iso-

flurane. After baseline blood sampling via a catheter in the tail vein, rats were intratra-

cheally inoculated with a high dose of 108 colony-forming units (CFU) of a log-phase

culture of Streptococcus pneumoniae serotype 3 (ATCC 6303; Rockville, MD, USA) in a

volume of 150 μL using a miniature nebulizer. A second group of rats was inoculated

repeatedly, at day 0 and day 4, with 107 CFU of a log-phase culture of S. pneumoniae in

a volume of 150 μL. A third group of rats was inoculated with 106 CFU of a log-phase

culture of S. pneumoniae embedded in agar beads in a volume of 150 μL, from which

bacteria are slowly released [31] (Fig. 1). These S. pneumoniae agar beads were pre-

pared as described in the Additional file 1. Finally, additional rats were inoculated with

high dose Pseudomonas aeruginosa (PA103, 109 CFU; kindly provided by Iglewski La-

boratory, Rochester, NY, USA) in a volume of 150 μL either in a bolus solution or via

slow release, embedded in agar beads.

All rats were weighed daily. Supplemental fluid bolus (10 ml/kg Ringers Lactate) was

given every 24 h intraperitoneally in case of severe illness, as indicated by > 10% weight

loss compared to the previous day. Blood samples of 500 μl were taken via the tail vein

at baseline and at day 3, 7, and 10 to measure the hemoglobin (Hb) level. No control

group was used in these experiments. Hb levels were compared with the baseline

measurement. After 7 or 14 days, rats were anesthetized by intraperitoneal injection

of 90 mg/kg ketamine (Dechra, The Netherlands), 0.25 mg/kg dexmedetomidine

(Orion Pharrma, Finland), and 0.5 mg/kg atropine (Centrafarm, The Netherlands)

to bleed them via the inferior caval vein. The blood was collected into EDTA anti-

coagulated tubes

Fig. 1 Streptococcus pneumoniae embedded in an agar bead. Richardson staining, × 400 magnification.
Agar beads with Streptococcus pneumonia have a diameter of 50–200 μm. The size of these S. pneumonia
beads is similar to the Pseudomonas aeruginosa agar beads in the original protocol [31].
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Sample analysis

Hb levels were measured using the ScilVet abc + (scil animal care company GmbH,

Germany). Of each rat, the two middles lobes of the right lung were homogenized in 1

ml sterile PBS. Serial 10-fold dilutions were plated on blood agar plates and incubated

at 37 °C with 5% CO2. The number of CFUs was counted the next day.

Pig experiment

This study was approved by the Institutional Review Board and Animal Ethics Commit-

tee of the University of Barcelona, Barcelona, Spain. The animal procedures were per-

formed according to local Spanish guidelines for the use and care of animals.

Experimental protocol

A porcine ventilator-associated pulmonary sepsis model was used, as has been de-

scribed before [32]. Five female large-white Landrace pigs of 31 ± 1.3 kg (range 29–32

kg) were used. Pigs were premedicated with intramuscular 2 mg/kg azaperone. Then,

animals were induced with 2–2.5 mg/kg of propofol, orotracheally intubated with a 7.5-

mm I.D. endotracheal tube and mechanically ventilated with a SERVO-i (Maquet,

Wayne, NJ, USA). Pigs were ventilated in volume-control setting, with a tidal volume

of 10 ml/kg, inspiratory fraction of oxygen 40%, and without positive end-expiratory

pressure. Respiratory rate was adjusted every 6 h to maintain normocapnia (40–45

mmHg PaCO2). An arterial line was inserted into the femoral artery to monitor sys-

temic arterial pressure and to collect blood samples. A central venous catheter was sur-

gically placed in the jugular vein for intravenously fluid and drug administration. A no.

8 Foley catheter was placed into the bladder through surgical mini-pelvectomy. Cef-

triaxon (1 g) was administrated intravenously 30 min before intubation and 50 mg/kg

was given every 12 h to prevent pneumonia caused by oropharyngeal flora. Following

surgical preparation and stabilization—approximately 4 h after intubation—the pigs

were bronchoscopically inoculated with 15mL of 108 CFU of a log-phase culture of

Pseudomonas aeruginosa (subtype ATCC 27853, ceftriaxone resistant) into each lobe.

The inoculum was prepared as described above. Ringer lactate and 0.9% NaCl solution

were infused to maintain fluid balance. The animals received 2 l of 0.9% NaCl daily.

Also, boluses of 20 ml/kg were given when the pig was thought to be fluid responsive.

The fluid therapy targeted urine output ≥ 0.5 m/kg/h. Blood was drawn via the arterial

line into EDTA anti-coagulated and serum separating tubes (BD™ Vacutainer™ SST™ II

Advance Tubes). Samples were centrifuged for 10 min, at 1750×g and the serum was

stored at − 80 °C. Blood samples were taken at baseline (just prior to inoculation) and

every 12 h thereafter, until 72 h. Bronchoalveolar lavage (BAL) was performed bronch-

oscopically with 40ml saline in the right medium lobe at baseline, 24 and 72 h there-

after. The animals were euthanized 72 h after intubation using intravenous overdosing

propofol, potassium.

Blood sampling and analysis

Full blood count and hemoglobin was assessed every 24 h through a hematocytometer

(Siemens Advia 2021i, Erlangen, Germany). At the same time points, serum iron was

measured using a colorimetric assay (Sekisui Diagnostics, Lexington, MA). Total iron-
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binding capacity (TIBC) was measured using a colorimetric assay (Pointe Scientific).

Transferrin levels were calculated using the formula TIBC (μmol/L)/25.1. Transferrin

saturation was calculated with the formula serum iron/(25.1 × total transferrin) × 100%.

Ferritin (LsBio), hepcidin (LsBio), and interleukin 6 (IL-6) levels (Millipore Iberica,

S.A., Madrid, Spain) were measured by enzyme-linked immunosorbent assay kits. Lung

tissue was homogenized and cultured on agar plates at 37 °C with 5% CO2. The number

of CFUs was counted the next day.

Statistical analysis

The data is expressed as median ± IQR. Differences between time points were analyzed

using a paired samples t test or a Wilcoxon signed-ranks test, for normally and not

normally distributed parameters, respectively. Statistical significance was considered to

be at p ≤ 0.05. All statistical analyses were performed using IBM SPSS Statistics 24.

Results
Rat experiments

Streptococcus pneumoniae pneumonia in rats does not cause AI

Rats infected with a bolus dose of 108 CFU S. Pneumoniae appeared very ill, with 10%

weight loss and a ruffled fur at 24 h after inoculation. The animals died the second day,

prior to the development of anemia. Rats inoculated with 107 CFU S. Pneumoniae did

not show a decrease in weight. At day 4, these rats were inoculated again with 107 CFU

S. Pneumoniae, and from then on, the animals started to lose weight (Fig. 2a). At day 7,

the rats appeared ill, with lethargic behavior and ruffled fur. The animals showed

macroscopic pneumonia, and there were still bacteria present in the lungs, indicating

that the infection was not cleared (Fig. 2b). However, Hb levels were not decreased at

7 days compared to baseline (Fig. 2c). Next, an approach was taken using bacteria em-

bedded in beads, with the aim to induce a slow releasing reservoir resulting in pro-

longed unresolved infection. Rats inoculated with 106 CFU S. pneumoniae embedded in

agar beads did not lose weight during the experiment, but even seemed to gain weight

(Fig. 2d). At 14 days, macroscopic lesions were visible in the lungs and there were still

bacteria present in the lungs (Fig. 2e). However, Hb levels did not decrease during the

14 days experiment (Fig. 2c). In addition, rats inoculated with 109 CFU P. aeruginosa or

109 CFU P. aeruginosa embedded in agar beads did not show any decrease in Hb level

either (data not shown).

Pig experiments

Pseudomonas aeruginosa causes pneumonia and shock in pigs

Between 12 and 24 h after inoculation, pigs presented signs of severe respiratory infec-

tion. Table 1 shows the hemodynamic parameters of the pigs at several time points dur-

ing the experiment. The mean arterial pressure decreased over time, from 80mmHg

(76–85) at baseline to 67 mmHg (63–71) at 24 h (p = 0.02), while the heart rate (p =

0.07) and noradrenaline infusion rate (p = 0.07) tended to increase in the first 24 h. Ar-

terial base excess decreased between baseline and 12 h, from 7.6 mmol/L (5.7–9.7) to

2.8 mmol/L (− 1.1–6.4) (p = 0.03) (Table 1). Also, platelets decreased in the first 24 h

from 338 × 109/L (330–568) to 205 × 109/L (123–219) (p = 0.004) and remained low
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throughout the experiment. White blood cell (WBC) counts tended to increase over

time, from 8.8 × 109/L (6.5–11.6) at baseline to 23.8 × 109/L (12.8–29.9) at 48 h

(p = 0.07). CFU counts increased during the experiment, from 0 at baseline until 4.6 log

CFU/ml (3.7–5.9) (p = 0.04) in BAL fluid at 72 h (Fig. 3).

Pseudomonas aeruginosa pneumonia causes AI in pigs

Hb levels at baseline were 9.9 g/dl (9.2–10.7) and decreased significantly over time to

7.6 g/dl (7.1–7.7) after 72 h (p = 0.01) (Fig. 3). Serum iron level at baseline was already

lower than normal for pigs (9.5 μmol/L (6.8–14.4)) and decreased significantly

Fig. 2 Failed attempts to establish rat AI model using S. pneumoniae. Daily weight (a), lung CFU/ml after 7
days (b), and Hb levels (c) of rats inoculated with a log-phase culture of 107 CFU S. pneumoniae at day 0
and day 4. The daily weight (d), lung CFU/ml (e), and Hb levels (f) of rats inoculated with a log-phase
culture of 106 CFU S. pneumoniae embedded in agar beads. N = 4 and data are expressed as mean + SD
(n = 4). ***P < 0.001, **P < 0.01, *P < 0.05
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throughout the experiment to 3.5 μmol/L (1.9–4.1) after 72 h (p = 0.01). Also, transfer-

rin saturation decreased significantly over time from 10.4% (8.6–13.0) at baseline to

4.7% (2.9–6.0) after 72 h (p < 0.01). Transferrin levels tended to decrease during the ex-

periment from 3.6 g/L (3.0–4.7) at baseline to 2.6 g/L (2.5–2.8) at T = 72 h (p = 0.08).

Ferritin levels increased significantly from 25.2 ng/ml (21.1–36.4) at baseline to 188.6

ng/ml (178.0–207.8) after 72 h (p = 0.04). Hepcidin levels slightly increased during the

experiment from 151.2 ng/ml (110.1–185.5) at baseline to 359.9 ng/ml (138.8–476.2)

after 48 h (p = 0.08). Finally, IL-6 increased significantly from 31 pg/ml (17–241) to

2698 pg/ml (1713–4180) at T = 24 h (p = 0.04) (Fig. 4).

Table 1 Hemodynamic parameters of pigs with pneumosepsis
Time (h) MAP (mmHg) HR (beats/min) Noradrenalin (μg/kg/min) Arterial BE (mmol/L)

0 80 (4) 65 (29) 0 (0) 7.6 (2.1)

12 81 (12) 130 (41) 0.46 (0.46) 2.8 (4.6)

24 67 (5) 97 (28) 3.7 (3.1) 4.4 (5)

48 74 (12) 79 (13) 8.7 (14.8) 7.6 (2.7)

72 83 (13) 55 (11) 1.6 (2.1) 7.4 (2.2)

P value 0.02* 0.07# 0.07* 0.03#

BE base excess, MAP mean arterial pressure, HR heart rate. N = 5 and data are expressed as mean (SD)
#P values are calculated for the difference between baseline and 12 h
*P values are calculated for the difference between baseline and 24 h

Fig. 3 Characteristics of a pig pneumosepsis model. Hb levels (a), WBC counts (b), platelet counts (c),
and P. aeruginosa concentration in the BAL fluid (d) in pigs inoculated with 15 mL of 108 CFU of a
log-phase culture of P. aeruginosa into each lung lobe. N = 5 and data are expressed as mean + SD
(n = 5). ***P < 0.001, **P < 0.01, *P < 0.05

Boshuizen et al. Intensive Care Medicine Experimental 2019, 7(Suppl 1):47 Page 7 of 11



Discussion
Initially, the use of rodents was evaluated for the development of this AI model, be-

cause of the lower costs and because of ample experience with these animals. However,

efforts to develop a rat model for AI due to S. pneumoniae or P. aeruginosa pneumonia

were unsuccessful. The rats did not survive inoculation of high dose bacteria, whereas

a lower, repeated dose of bacteria or slow-release infection with bacteria embedded in

agar beads did not result in AI, despite the presence of unresolved infection at day 14.

This suggests that it is not feasible to induce AI due to prolonged severe infection in

rats with the use of pathogens commonly encountered in the critically ill. Conse-

quently, we switched to an existing pig model. This model is a model of longer lasting

pneumosepsis induced by P. aeruginosa and has been detailed elsewhere [32]. However,

the anemia status in this model has never been described.

Fig. 4 Iron parameters in pigs with pneumosepsis. Levels of iron (a), ferritin (b), transferrin (c), transferrin
saturation (d), hepcidin (e), and IL-6 (f) in pigs inoculated with 15mL of 108 CFU of a log-phase culture of P.
aeruginosa into each lung lobe. N = 5 and data are expressed as mean + SD (n = 5). ***P < 0.001, **P < 0.01,
*P < 0.05. Dotted lines represent reference levels
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We found that prior to illness induction, the pigs have low iron and ferritin levels,

compatible with iron deficiency at baseline. However, the pigs developed anemia over

time during the sepsis. The decrease in Hb was due to AI, exemplified by hypoferremia,

decreased transferrin saturation, and increased ferritin levels, associated with an in-

creased IL-6 and hepcidin levels. Also, serum transferrin levels tended to decrease due

to the inflammation. Taken together, these pigs show all the characteristics of AI [33].

The main strength of this model is that it is very similar to the ICU setting since the

pigs had severe pneumosepsis, requiring mechanical ventilation and hemodynamic sup-

port. The animals developed kidney injury and acute respiratory distress syndrome

showing that this is a model for septic shock with multi-organ failure [32, 34, 35].

Other strengths of this model are the comparability to AI in humans and the possibility

of a long-term study. Future animal studies could use this pig AI model to pre-test the

efficacy and toxicity before the start of trials with new agents for AI in the critically ill.

Also, as the cardiac output of pigs almost equals that of humans [36], dose-finding

medication studies can be done in this model as well. However, as the pigs that we used

had a mild iron-deficiency at baseline, we would recommend to correct this iron defi-

ciency by an intramuscular iron injection for studies to AI [37]. Further, compared to

patients on the ICU that receive mechanical ventilation for weeks, this model is still a

short-term model.

Conclusions
This study describes an AI model relevant for critical care. This model can be used to

study the pathophysiology of AI during critically illness as well as the effect of new

therapies for AI that aim to increase iron availability. Using this model, both the effect

on anemia as well as the effect on immune host response, bacterial resolution, and

organ failure can be studied.

Additional file

Additional file 1: Protocol for embedding Streptococcus pneumonia in agar beads. (DOCX 14 kb)
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