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Abstract

Mammalian methanogenesis is regarded as an indicator of carbohydrate fermentation
by anaerobic gastrointestinal flora. Once generated by microbes or released by a non-
bacterial process, methane is generally considered to be biologically inactive. However,
recent studies have provided evidence for methane bioactivity in various in vivo
settings. The administration of methane either in gas form or solutions has been shown
to have anti-inflammatory and neuroprotective effects in an array of experimental
conditions, such as ischemia/reperfusion, endotoxemia and sepsis. It has also been
demonstrated that exogenous methane influences the key regulatory mechanisms and
cellular signalling pathways involved in oxidative and nitrosative stress responses. This
review offers an insight into the latest findings on the multi-faceted organ protective
activity of exogenous methane treatments with special emphasis on its versatile effects
demonstrated in sepsis models.
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Background
The human body uses and produces several gases. Nitric oxide (NO), carbon monoxide

(CO) and hydrogen sulphide (H2S)—once considered to be toxic air pollutants—play a

vital biochemical modulator role in living tissues. These small, volatile, available and

biologically effective molecules are classified as ‘gasotransmitters’, which means that

they take part in cellular communications. Methane (CH4) is also part of the gaseous

environment which maintains the aerobic metabolism within the living system. If we

discuss the available literature data on the generation and biological effects of CH4, the

current evidence does not fully support the gasotransmitter concept, but it does sup-

port the notion that CH4 is bioactive. Several clinical studies have demonstrated that

endogenous CH4 can modulate the signalling mechanisms of the enteric nervous sys-

tem; in addition, exogenous CH4 has been proved to protect against organ damage in

numerous experimental models associated with inflammation and/or ischemia/reperfu-

sion (I/R) syndromes [5]. We briefly summarise the available data on the relationship

between inflammatory activation and CH4 administrations with special emphasis on

the possible mechanism of action. Papers that directly monitored sepsis- or endotoxin-

linked organ dysfunction were then considered to illustrate the relationship between

CH4 treatments and the effect on sepsis-related end organ dysfunction (Table 1).
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CH4: a brief overview

CH4 is an intrinsically non-toxic, combustible gas which forms explosive mixtures with

air at concentrations between 5% (lower explosive limit) and 15% (upper explosive

limit) at room temperature. In humans, large amounts of CH4 can be produced by

carbohydrate fermentation in the gastrointestinal (GI) tract through the metabolism of

methanogenic microorganisms. The catalysing enzyme of this pathway is methyl

coenzyme M reductase, while the microorganisms are obligate anaerobic Archae

[9, 20, 21, 34, 49].

It should be added that relatively little is known about the in vivo roles of com-

mensal methanogens in GI physiology because it is impossible to study or culture

these microorganisms together with oxygen-requiring aerobic cells in conventional

ways. The actual level of endogenous CH4 generation in the human body is still an

open question. In general terms, about one-third of healthy adults emit gaseous

CH4 identified with conventional breath testing, but a recent study using stable

carbon isotopes and high-precision measurements provided evidence that exhaled

CH4 levels were always above inhaled CH4 concentration [20]. Significant CH4 re-

lease was also demonstrated in previously non-CH4 producer volunteers after high

ethanol intake [43]. Furthermore, in vitro and in vivo studies have revealed the

possibility of non-microbial CH4 formation in mitochondria [29, 30] and eukaryotic

cells, especially under hypoxic stress stimuli [14, 15, 44–46, 48]. Today, the sum of

evidence suggests that a variable amount of excreted CH4 in the breath of

mammals is possibly linked to non-archaeal processes [6, 42].

Another important issue is that due to its physico-chemical properties, intraluminal

CH4 can traverse the GI mucosa and enter the splanchnic circulation freely. When

Table 1 Summary of in vivo studies using CH4 that also monitored sepsis/LPS/surgery-induced
organ dysfunction and other parameters of tissue damage

Reference Experimental model/CH4

administration route
Target
organ

Reported effects/main findings

Zhang X
et al. [56]

Mouse + LPS
Rat + E. coli
Mouse + DSS
MRS (16 ml/kg ip) pre-
treatment

Colon
Immune
organs

Suppressed activation of NF-κB /MAPKs
Increased survival
Enhancement of IL-10 release

Sun A et al.
[38]

Rat + LPS
MRS (2 ml/kg and 20ml/kg)
pre-treatments

Lung Reduction of acute lung injury
Prolonged survival

Li Z et al.
[23]

Mouse + CLP
MRS (10ml/kg ip) post-
treatment

Liver Reduction of sepsis-induced acute liver injury

Jia Y et al.
[18]

Mouse + CLP
MRS (10ml/kg ip) post-
treatment

Kidney Reduction of sepsis-induced acute kidney injury

Li Z et al.
[22]

Mouse + CLP
MRS post-treatment

Lung
Intestines

Inhibition of NOD-like receptor protein 3-mediated
pyroptosis in vivo and in vitro

Bari G et al.
[2]

Pig + ECC
Inhalation of 2.5% v/v CH4 –
normoxic air

Kidney Higher renal blood flow during extracorporeal
circulation

Zhang D
et al. [58]

Mouse + abdominal surgery
MRS (16 ml/kg ip) post-
treatment

Brain Reduction of postoperative cognitive dysfunction and
microglial activation

CLP, cecal ligation and puncture; DSS, dextran sodium sulfate; ECC, extracorporeal circulation; IL-10, interleukin 10; LPS,
lipopolysaccharide; MAPKs, mitogen-activated protein kinase; MRS, methane-rich saline; NF-κB, nuclear factor-κB
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reaching the lungs, the transported CH4 is partially released into the breath if the par-

tial pressure is higher than that in the atmosphere, where it is normally about 1.8 parts

per million volume (ppmv). Therefore, exhaled CH4 levels will change in relation to in-

testinal perfusion alterations, and variations in breath CH4 output may thus be related

to the flow conditions of the mesenteric microcirculation as well [40].

Endogenous CH4

Elevated breath CH4 concentrations have been traditionally linked to numerous GI

health conditions, such as sugar malabsorption, small intestinal bacterial overgrowth or

irritable bowel syndrome [7, 10, 13, 33, 41]. Further data suggest that endogenously

produced CH4 can influence mammalian metabolism and thus energy homeostasis [5].

More importantly, higher CH4 concentrations in the GI tract can significantly slow

transit time, while increasing the number of muscle contractions [17, 31]. It has been

suggested that by slowing down the transit, the time for nutrient absorption is length-

ened, which, together with boosted levels of methanogenic microorganisms in the in-

testines, could lead to an increased weight gain process and thus the development of

obesity [3]. Indeed, a significantly higher ratio of H2-utilizing methanogen Archaea is

associated with obesity [26, 27, 55].

Effects of exogenous CH4

It should be noted that a shift in the energy balance may alter the inflammatory status

as well. In this line, in a rat model of endurance exercise, treadmill running induced in-

flammatory activation, including leukocyte accumulation (evidenced by myeloperoxi-

dase (MPO) activity, raised plasma levels of interleukins IL-1β, IL-6, IL-10 and tumour

necrosis factor alpha (TNF-α)), while exogenous CH4 administration prolonged the

running time and normalised the changes in blood lactate and glucose and the

parameters of pro-inflammatory activation in the animals [52].

Indeed, it has been shown that exogenous CH4 efficiently influences many aspects of

inflammatory pathologies [5, 6]. After the first study using a model of intestinal I/R,

several series of analyses demonstrated that CH4-containing normoxic artificial air

(2.2–2.5 v/v% CH4) has anti-inflammatory effects in I/R injuries with decreasing oxida-

tive and nitrosative stress levels [4, 29, 32]. CH4 inhalation improved mitochondrial

function by preserving the control levels of basal respiration and lowering cytochrome

c activity [37]. Serosal microcirculation, the structure of small intestinal mucosa and

the epithelial barrier function were also preserved by CH4 inhalation in a mesenteric I/

R model [29]. In a recent study, where the nitrergic neuron numbers were characterised

in adjacent intestinal segments before and after the occlusion of the superior mesen-

teric artery, exogenous CH4 inhalation significantly suppressed nitrotyrosine formation

at all intestinal sites and protected the nitrergic neuron population [32]. Nitrotyrosine

formation has been significantly suppressed by raising the CH4 input prior to stress in-

duction in other animal models as well. In this line, exogenous CH4 lowered the malon-

dialdehyde (MDA) and TNF-α levels, increased protein kinase B phosphorylation and

hemoxygenase-1 (HO-1) expression, and significantly reduced neuronal deficit in a

cerebral I/R model [57].
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CH4-enriched saline

CH4 can be administered in supersaturated methane-rich saline (MRS) solution as well

(using 0.4MPa pressure for 3 h). In this case, the concentration of CH4 does not drop

significantly for 24 h [54] and remains relatively stable for over 4 weeks after production

[8]. Using MRS, Ye et al. [54] first demonstrated that the plasma alanine aminotransfer-

ase (ALT) and aspartate aminotransferase (AST) levels were dose-dependently de-

creased after liver I/R. MRS also alleviated inflammation by reducing the elevated

serum levels of interleukin-6 (IL-6), TNF-α, interleukin-1β (IL-1β) and interferon-γ

(IFN-γ) and activated nuclear factor-κB (NF-κB) and mitogen-activated protein kinases

(MAPK) both in concanavalin A–induced autoimmune hepatitis [16] and in carbon

tetrachloride-induced liver injury [53]. In the latter case, MRS reduced the activation of

chemokine ligand 1 (CXCL1), intercellular adhesion molecule-1 (ICAM-1) and MPO

activity as well, while serum ALT and AST levels returned to control levels.

Recently, Wang et al. [47] demonstrated that MRS treatment is able to reduce

the spleen weight, the disease activity index, the ulcer area and the histology score

in acetic acid-treated mice with colitis. In this experimental series, MRS alleviated

the inflammatory activation through reduced serum TNF-α and IL-6 and raised IL-

10 levels. Oxidative stress with lowered tissue MDA levels and myeloperoxidase

(MPO) activity and increased superoxide dismutase (SOD) and glutathione transfer-

ase (GSH) activity was reduced almost as effectively as after salazosulfapyridine

treatment. Similar results have been presented in an acute pancreatitis model. The

intraperitoneally applied MRS improved the tissue damage scores, exerted potent

anti-apoptotic effects, inhibited the elevation of inflammatory cytokines (TNF-α,

IL-6 and IFN-γ), elevated IL-10 levels, decreased tissue MPO activity and preserved

SOD activity [51]. In a renal I/R model, MRS induced higher catalase (CAT) and

SOD activity with diminished tissue MPO activity, MDA and 8-hydroxy-2′-deoxy-

guanosine (8-OHdG) levels, a lower rate of apoptosis was detected in the tissues,

and suppressed blood urea nitrogen and creatinine, serum IL-6 and TNF-α levels

were present. Again, this approach increased IL-10 concentration and decreased

the number of F4/80+ macrophages in the renal tissue as well [28].

The anti-apoptotic effects of CH4 were first described in skin and liver I/R models

[36, 54]. The authors have shown that MRS protects the transplanted skin flaps by re-

ducing the leukocyte infiltration and lowering the apoptotic cell count, increases the

expression of the anti-apoptotic B cell leukaemia/lymphoma-2 (Bcl-2) and attenuates

the pro-apoptotic protein Bcl-2-associated X protein (Bax), the expression of pASK-1,

p-JNK, and caspase-3 activity [36].

In a clinically relevant rat model, MRS treatment improved the cardiac function and

prevented the formation of myocardial fibrosis in the long run 4 weeks after myocardial

infarction. CH4 treatment reduced the level of myocardial necroenzymes, increased tis-

sue SOD activity and GSH content, and lowered MPO activity, MDA and 8-OHdG

levels, and xanthine oxidoreductase (XOR) expression. Again, the treatment decreased

the number of apoptotic cells in addition to diminishing the expression of caspase-3

and caspase-9, and the Bax/Bcl-2 ratio [8].

There is also a growing amount of data on the neuroprotective properties of CH4. In

a CO toxicity model, Fan et al. [12] demonstrated that MRS was protective against

learning deficit, and Shen et al. [35] showed that MRS treatment raised the number of
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Nissl-stained cells and the potency to restore the CA1 region and cortex. Both research

teams showed that MRS decreased tissue MDA, 3-nitrotyrosine and 8-OHdG levels,

and plasma TNF-α and IL-1β levels, while increasing plasma IL-6 content and tissue

SOD activity [12, 35]. MRS treatment reversed the changes in the thickness of the inner

nuclear layer and the inner plexiform layer after diabetic retinopathy [50] and sup-

pressed the reduction of retinal thickness after I/R [24]. In addition, MRS inhibited

ganglion cell loss [24, 44–46, 50], improved the blood-retina barrier function [50], re-

duced visual dysfunction [24, 44–46], and lowered TNF-α- and IL-1β-positive cell

numbers, and expression of VEGF and GFAP [50]. MRS decreased the overexpression

of a mitochondrial biogenesis marker (PGC1-α) and restored citrate synthase activity,

thus boosting ATP levels [44–46]. It also enhanced the upregulation of Bcl-2 and re-

duced the upregulation of Bax, caspase-3 and caspase-9, and cut oxidative stress levels

by significantly suppressing 8-OHdG, 4-hydroxy-2-nonenal (4-HNE) and MDA levels,

thus increasing SOD, CAT and glutathione peroxidase (GPx) activity [24]. In a spinal

cord injury model, MRS treatment improved the Basso, Beattie and Bresnahan score

over time, lowered microglial activation and inflammatory cell infiltration, raised tissue

SOD activity and reduced MDA, TNF-α, IL-1β and IL-6 levels [44–46]. In a very simi-

lar spinal cord I/R study, MRS improved neurological damage, preserved the blood-

spinal cord barrier, reduced oedema formation and leukocyte infiltration, and boosted

SOD, CAT activity and GSH levels, while decreasing MDA, 8-OHdG and 3-

nitrotyrosine levels. It also lowered the apoptotic cell number, caspase-3 and caspase-9

levels, and cytochrome c translocation into the cytoplasm, the mRNA and content of

TNF-α, IL-1β, CXCL1 and ICAM-1 and the metalloproteinase MMP-9, while increas-

ing the expression of the tight junction proteins claudin-5, occludin and ZO-1 [44–46].

The suppressed microglia and astrocyte activation, together with lowered CD3-positive

T cell infiltration, was demonstrated in an arthritis model as well [59].

Possible mechanisms of action

Due to its apolar properties, CH4 can be dissolved in cell membranes; it may thus be

able to influence the physiochemical condition of the phospholipid bilayer [11]. Similar

to halothane, which can influence the G-protein-mediated signalling pathways, CH4 is

able to affect the function of transmembrane proteins, enzymes and ion channels [8].

Indeed, several studies have demonstrated the modulator effect of CH4 on cell-cell

junctions and plasma membrane integrity under oxido-reductive stress conditions.

Nevertheless, it has also been shown that CH4 can influence XOR activity and the iso-

form ratio of XOR; this facilitates its conversion into the xanthine dehydrogenase iso-

form, which then produces less reactive oxygen species (ROS) [4, 32]. XOR is not a

transmembrane protein; thus, other possibilities, such as changing the hydrophobic en-

vironment around the FAD site, should be taken into account to understand the mech-

anism of CH4 action.

Interestingly, CH4 accumulation may directly influence intracellular signalling reac-

tions, leading to anti-inflammatory responses via master switches, such as nuclear fac-

tor erythroid 2–related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) or

NF-κB [56]. CH4 seems to have effects on the phosphoinositide 3-kinase (PI3K) path-

way by facilitating the activation of Akt protein, thus increasing the expression of the
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HO-1 enzyme and promoting its anti-oxidative effects [57]. Moreover, also via the

PI3K/Akt pathway, CH4 is able to influence the expression of the anti-inflammatory

cytokine IL-10 through the activation of glycogen synthase-3β (GSK-3β). In a carbon

tetrachloride–derived liver inflammation model, Yao et al. [53] blocked GSK-3β with

wortmannin and pre-treated mice with anti-IL-10 antibody, which abolished the benefi-

cial effects of MRS and raised the levels of phosphorylated NF-κB and MAPK proteins

supporting the involvement of these pathways in the anti-inflammatory effects of CH4.

In an acetic acid–induced ulcerative colitis model, MRS also proved its protective ef-

fects by blocking the expression of Toll-like receptor 4 (TLR4) and myeloid differenti-

ation primary response 88 protein (MyD88) and attenuating the expression levels of p-

NF-κB, p65, p-JNK, p-ERK and p-P38. On the other hand, CH4 could promote the ex-

pression of IL-10, Janus kinase 1 (JAK1), and signal transducer and activator of tran-

scription 3 (STAT3), thus facilitating the anti-inflammatory response [47]. In another

study, Wang et al. showed that MRS treatment facilitated the time-dependent nuclear

translocation of Nrf2 in neurons, microglia and astrocytes after spinal cord injury. In

addition, expression of the Nrf2 inhibitor Keap1 protein was inhibited and NF-κB

translocation was blocked via this pathway [44–46].

The effects of CH4 in endotoxemia and sepsis

The effects of exogenous CH4 were tested in sepsis models as well, and it seems that

CH4-mediated protection involves a triad of anti-inflammatory, anti-oxidative and anti-

apoptotic actions (the mechanisms of CH4-mediated protection in experimental models

of sepsis and endotoxemia are summarised in Fig. 1). Along with the ‘anti-effects’, anti-

pyroptotic activity (a form of programmed cell death that occurs during infection) was

recently also reported in lung and intestinal tissues in mice [22]. As the first steps of

pyroptosis, NOD-like receptor protein 3 (NLRP3) inflammasome formation activates

caspase-1, which in turn further drives inflammation via the cleavage of pro-IL-1β to

IL-1β and pro-IL-18 to IL-18. Then an effector protein (Gasdermin D) is cleaved, and

it forms pores within the membrane and induces pyroptosis [39].

Most importantly, MRS administration reduced cecal ligation and puncture (CLP)-in-

duced endoplasmic reticulum stress in the kidney through the suppression of the

GRP78/ATF4/CHOP/caspase-12-mediated apoptotic pathway [18]. Similar to the find-

ings for MRS-treated ulcerative colitis [47] or autoimmune hepatitis [16] and in carbon

tetrachloride-induced liver injury [53], CH4 also attenuated the lipopolysaccharide

(LPS)-induced activation of MAPKs and NF-κB [56]. Moreover, CH4 enhanced GSK-3β

activation, thus leading to an increased expression of the anti-inflammatory cytokine

IL-10, similar to the findings for a carbon tetrachloride–derived liver inflammation

model [53, 56].

All of these effects could collectively contribute to reduced cellular and tissue injury

(i.e. in the lungs, intestines, kidneys and liver), amelioration of organ dysfunction (e.g.

enzyme markers and histopathological scores) and increased survival [18, 22, 23, 38,

56]. Indeed, the 5-day and 7-day survival rates were boosted significantly after MRS

therapies [22, 56].

Finally, it has been demonstrated that CH4 inhalation was able to reduce the systemic

inflammatory response in a clinically relevant pig model of extracorporeal circulation
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(ECC). In this study, the inotropic demand was significantly lower, the renal XOR activ-

ity was reduced, the arterial flow was significantly higher, and the hour diuresis

remained in the low normal range compared with the oliguria in the animals without

CH4 treatment [2].

Possible side effects of CH4

CH4 is a simple asphyxiant, meaning that it will displace oxygen in the air when present

at about 14% in a restricted place. In such cases, the respiratory dysfunction is not due

to the chemical specificity of the gas, but to the decreased oxygen content. Apart from

CH4-induced asphyxia, there is very little known about the side effects of CH4 adminis-

tration or how it may impact endogenous bacterial and non-bacterial productions. In a

case report, Jo et al. [19] reported on CH4-caused acute respiratory distress, but it

remained unclear whether this was related to the reduced oxygen content or due to the

direct gas effect within the lung tissue. Similarly, the harmful effects of inhaled CH4

could not be proven by the study of Manning et al. [25], where lower O2 and extremely

high CO2 levels were present together with the higher concentration of CH4. Data on

human cardiovascular effects are sparse, but in a case report with a 45 min CH4 expos-

ure, the unconscious patient had spontaneous breathing with an arterial pH value of

7.26 and made a full recovery later [1].

Conclusion
The review of the available literature argues in favour of CH4 as a bioactive, therapeutic

gas: exogenous CH4 improves cellular/organ function and increases survival in

Fig. 1 Documented CH4-mediated mechanisms in experimental models of sepsis, endotoxemia and systemic
inflammation. ATF4, activating transcription factor 4; Bax. Bcl-2-associated X protein; Bcl-2, B cell lymphoma 2; CHOP,
C/EBP homologous protein; CLP, cecal ligation and puncture; CNS, central nervous system; CytC, cytochrome C; ENS,
enteric nervous system; ER, endoplasmic reticulum; GRP78, glucose-regulated protein 78; GSK-3β, glycogen synthase
kinase 3 beta; GSH, glutathione; GSSG, glutathione disulphide; HO-1, heme oxygenase 1; IL-1β, interleukin 1 beta; IL-6,
IL-10, interleukin 6 and interleukin 10, respectively; I/R, ischemia/reperfusion; LPS, lipopolysaccharide; MAPKs,
mitogen-activated protein kinase; MPO, myeloperoxidase; NF-κB, nuclear factor-κB; NLRP3, NOD-like receptor protein
3; PARP, poly (ADP-ribose) polymerase; PPAR-γ, peroxisome proliferator-activated receptor gamma; ROS, reactive
oxygen species; SOD, superoxide dismutase; TLR4, Toll-like receptor 4; TNF-α, tumour necrosis factor alpha; XOR,
xanthine oxidoreductase
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experimental models of inflammation, I/R, sepsis and endotoxemia. Future investiga-

tions should provide additional evidence for the efficacy of CH4-based treatments in

other types of infectious disease models, filling the missing gaps in the still not fully

understood cellular signalling pathways and the mechanism of action of CH4.
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