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Abstract

Background: Global end-diastolic volume (GEDV) measured by transpulmonary
thermodilution is regarded as indicator of cardiac preload. A bolus of cold saline
injected in a central vein travels through the heart and lung, but also the aorta until
detection in a femoral artery. While it is well accepted that injection in the inferior
vena cava results in higher values, the impact of the aortic volume on GEDV is
unknown. In this study, we hypothesized that a larger aortic volume directly
translates to a numerically higher GEDV measurement.

Methods: We retrospectively analyzed data from 88 critically ill patients with
thermodilution monitoring and who did require a contrast-enhanced thoraco-
abdominal computed tomography scan. Aortic volumes derived from imaging were
compared with GEDV measurements in temporal proximity.

Results: Median aortic volume was 194 ml (interquartile range 147 to 249 ml). Per
milliliter increase of the aortic volume, we found a GEDV increase by 3.0 ml (95% CI
2.0 to 4.1 ml, p < 0.001). In case a femoral central venous line was used for saline
bolus injection, GEDV raised additionally by 2.1 ml (95% CI 0.5 to 3.7 ml, p = 0.01) per
ml volume of the vena cava inferior. Aortic volume explained 59.3% of the variance
of thermodilution-derived GEDV. When aortic volume was included in multivariate
regression, GEDV variance was unaffected by sex, age, body height, and weight.

Conclusions: Our results suggest that the aortic volume is a substantial confounding
variable for GEDV measurements performed with transpulmonary thermodilution. As
the aorta is anatomically located after the heart, GEDV should not be considered to
reflect cardiac preload. Guiding volume management by raw or indexed reference
ranges of GEDV may be misleading.

Keywords: Aorta, Aortic volume, Global end-diastolic volume, GEDV, GEDVI,
Transpulmonary thermodilution, Vena cava, Vena cava volume

Introduction
Transpulmonary thermodilution is commonly used and recommended in current guide-

lines for the management of critically ill patients with cardiovascular instability to assess

cardiac output (CO) and volume status [1, 2]. The parameter global end-diastolic volume

(GEDV), a hypothetical volume assuming all cardiac chambers being simultaneously in

diastole, is considered to reflect cardiac preload [3]. Michard et al. described that GEDV

indexed to body surface area (GEDVI) more adequately predicted volume responsiveness
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in patients with septic shock compared with the central venous pressure [4]. In a pro-

spective randomized trial, Goepfert et al. found that guidance with an algorithm including

GEDVI reduced complications and length of ICU stay in patients after cardiac surgery [5].

Kaneko et al. identified GEDVI as an important contributor to elevated extravascular lung

water (EVLW) in patients with ARDS [6].

However, it was recently shown that GEDVI did not reflect even markedly enlarged

left-ventricular end-diastolic volumes measured by cardiac angiography [7]. Furthermore,

reference values for GEDVI proposed by expert opinion vary and a reference range applic-

able to all subjects was repeatedly questioned [8–10]. A meta-analysis including 64 studies

recognized significantly higher mean GEDVI in septic patients compared with patients

undergoing major surgery and concluded the need to adapt therapeutic targets for differ-

ent patient populations [8]. Huber et al. noticed a dependence of GEDV on age, sex, body

height, and body weight in patients in a medical intensive care unit and proposed sex-

specific formulas to alleviate the problem of indexation [9]. A prospective observational

trial found a large inter-individual variability of GEDV and GEDVI and hypothesized that

the aortic volume might be the source of the observed heterogeneity [10]. This potential

explanation was based on the fact that the cold saline bolus injected for measurement

must transit the aorta to reach the temperature detector placed in a femoral artery. It is

well known that the aortic size increases with age and is sex dependent [11]. Patients with

an aortic aneurysm present with higher GEDVI values [12]. However, neither the theoret-

ical derivation nor contemporary reviews of GEDV and GEDVI measured by transpul-

monary thermodilution do consider the aortic volume [13–16].

In the present study, we investigate the hypothesis of a relationship between aortic

volume and GEDV.

Methods
Study population

The study was approved by the Ethics Committee of Charité - Universitätsmedizin

Berlin (vote EA 1/084/13). The study was performed at the Interdisciplinary Neuroin-

tensive Care Unit of Charité – Universitätsmedizin Berlin at Charité Campus Virchow,

with inclusion from January 2009 to December 2016. We identified subjects who had

monitoring with transpulmonary thermodilution implemented. Additionally, patients

were required to have received a contrast-enhanced CT scan of the thorax and abdo-

men, either as screening for injury after trauma, but also in search of a septic focus.

We selected patients with mechanical ventilation and an arbitrarily chosen time differ-

ence of maximum 12 h between CT scan and thermodilution measurement (Fig. 1).

Transpulmonary thermodilution measurements

As usual in transpulmonary thermodilution, iced saline was injected via a central ven-

ous line and the resulting thermal signal was detected by a thermodilution catheter

(PVPK 2015 L20-A) in a femoral artery. Both catheters were connected to a PiCCO2

monitor (Pulsion Medical Systems, Munich, Germany).

Cardiac output (CO) is derived from the area under the curve by the Stewart-

Hamilton formula [17]. The thermal signal may be characterized further by mean tran-

sit time (MTt) and downslope time (DSt), the inverse of its rate of decay [15, 18]. MTt
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times CO equals the distribution volume of thermal indicator, the intrathoracic thermal

volume (ITTV). In a series of sequentially traversed volumes, the largest one deter-

mines the DSt [13]. In case of transpulmonary thermodilution, the largest thermal com-

partment is assumed to be the lung, resulting in the pulmonary thermal volume PTV =

CO × DSt. The difference between ITTV and PTV equals the GEDV, which may be

calculated as:

GEDV ¼ CO�MTtð Þ− CO� DStð Þ

CO, MTt, DSt, GEDV, and EVLW were obtained from the average of a series of at

least three venous injections of 20 ml of iced saline [19], with outliers (± 3 SD) dis-

carded. All thermodilution data were extracted from archived log files of the PiCCO2

devices. As suggested by the manufacturer, GEDVI was calculated by dividing GEDV

by body surface area based on predicted body weight.

Of note, in transpulmonary thermodilution, the volume between the aortic valve and

the detector in a femoral artery is obviously traversed by the cold indicator bolus.

Therefore, measured GEDV may be split in a venous volume, a central part—the vol-

ume of interest as surrogate for cardiac preload—and the aortic volume:

GEDVmeasured ¼ GEDVvenous þ GEDVcentral þ GEDVaortic

The venous part may be assumed to be zero in case of a central venous line in the su-

perior vena cava. However, the aortic part of GEDV remains inevitably included in

transpulmonary thermodilution measurements.

Image analysis

Contrast-enhanced thoracic-abdominal CT scans were retrieved from the Picture Arch-

ive and Communication System GEPACS (Centricity PACS 3.2 RA 1000 Workstation,

GE Healthcare, Chicago, USA). Post-processing of the images was performed with

Osirix® MD 6.5.2 (Pixmeo SARL, Geneva, Switzerland). The aorta was identified on

axial slides and marked manually as region of interest (ROI) [20, 21]. The resulting

Fig. 1 Flow diagram of patient identification. CT computed tomography
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sequence of interconnected ROIs together with the slice width was used for volume

calculation, with the left coronary artery and the tip of the transpulmonary thermodilu-

tion catheter in the femoral artery as longitudinal boundaries. This reconstructed

volume is referred to as “aortic volume” (Fig. 2, Additional files 1 and 2). For length

determination, a central path was marked manually. Diameters were calculated from

cross-sectional areas assuming circular boundaries. When a femoral central venous

catheter was present, reconstruction of the volume of the inferior vena cava was

performed likewise, using the tip of the catheter and the right atrium as boundaries. In

patients with a subclavian or jugular central venous catheter, the correct position of its

tip is at the entrance of the right atrium. Consequentially, the additional volume of the

vena cava relevant for thermodilution measurements was assumed to be zero.

Statistical analysis

Statistical computation was performed with R 3.4.3 (R Core Team, R Software Foundation,

Vienna, Austria, 2018). Results are given as median and interquartile range (IQR) or with

Fig. 2 Representative reconstructed three-dimensional sagittal computed tomography images of the heart
and the aorta. Left side is from a 26-year-old female with meningoencephalitis and septic shock, 59 kg, 170
cm. GEDV 502ml, GEDVI 293 ml/m2. Right side shows data from a 72-year-old female with aneurysmal
subarachnoid hemorrhage, 165 cm, 78 kg. GEDV 1263ml, GEDVI 787 ml/m2. 3D rotational images are
provided in the electronic supplements (see Additional files 1 and 2). Aortic volume, defined as the volume
of the aorta between the left coronary artery and the tip of the femoral catheter, is visualized in blue.
Proportions reflect real dimensions. Note the difference in size and shape of the aortic volume
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mean and corresponding 95% confidence intervals (95% CI), as appropriate. No imputation

was performed for missing data. Regression analysis was performed with robust linear re-

gression (R package robustbase, version 0.93-5) to account for heteroscedasticity and skew-

ness. Biometric parameters (age, sex, body height, and weight) were investigated

simultaneously to account for partial correlation using multivariate models. Mixed effect

models to correct for repeated CT measurements in few patients proved not to be superior

by the minimized Akaike Information Criterion (AIC) [22]. Therefore, in favor of parsi-

mony, all measurements were regarded as independent. Explained variance is given by ad-

justed R2. p values less than 0.05 were considered significant.

Results
Data description

We identified 103 CT scans in 88 patients meeting the inclusion criteria (Fig. 1). Demographic

data of the patients are shown in Table 1. ICU scores, vasoactive drugs, ventilation parameters,

and location of central venous catheters are shown in Table 2. Included in this table are time

differences and fluid balance between CT scanning and thermodilution measurements. Data

of CT scans and transpulmonary thermodilution measurements are given in Table 3.

Aortic volume

Median aortic volume, measured from the aortic valve to the tip of the femoral artery

catheter, was 158 ml (IQR 126 to 207 ml) in females and 213ml (IQR 169 to 287 ml) in

males (p < 0.001). Aortic volume increased by 2.3 ml (95% CI 1.7 to 2.8 ml, p < 0.001)

per year of patient age. Aortic volume showed no significant relationship to body height

(p > 0.05), but increased by 1.2 ml (95% CI 0.3 to 2.2 ml, p = 0.009) per kg of patient

body weight. Measurements of aortic volume had a coefficient of repeatability of 2.1%.

Table 1 Patient characteristics

Patients All Female Male

n (%) 88 (100) 32 (36.4) 56 (63.6)

Age, year 57 (42–68) 52 (40–70) 59 (45–67)

Weight, kg 80 (70–90) 65 (60–80) 85 (75–94)

Body height, m 1.74 (1.68–1.80) 1.65 (1.60–1.70) 1.8 (1.73–1.83)

BMI, kg/m2 26 (23–29) 25 (22–29) 26 (24–29)

Reason for ICU admission, n (%)

Traumatic brain injury 22 (25.0) 2 (6.3) 20 (35.7)

Spontaneous intracranial hemorrhage 16 (18.2) 1 (3.1) 15 (26.8)

Aneurysmal subarachnoid hemorrhage 14 (15.9) 9 (28.1) 5 (8.9)

Infections of the central nervous system 8 (9.1) 5 (15.6) 3 (5.4)

Sepsis 6 (6.8) 4 (12.5) 2 (3.6)

Infarct 6 (6.8) 2 (6.3) 4 (7.1)

Tumor 4 (4.5) 4 (12.5) 0 (0)

Respiratory failure 3 (3.4) 0 (0) 3 (5.4)

Other 9 (10.2) 5 (15.6) 4 (7.1)

In-hospital mortality, n (%) 39 (44.3) 16 (50) 23 (41.1)

BMI body mass index, ICU intensive care unit. Data are presented as median (interquartile range) or number (frequency
in percent)
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Measurements of inferior vena cava

Fifteen measurements were performed with a femoral central venous line. In two patients,

we were unable to unequivocally identify the upper boundary of the vena cava at the level

of the diaphragm due to enlarged hepatic veins. Thus, an accurate and reproducible vol-

ume calculation was impossible. In the remaining 13 patients, median volume of the infer-

ior vena cava was 127ml (IQR 93 to 155ml). Analysis of relationships with age, sex,

height, and weight was not considered meaningful due to the low number of patients.

Table 2 Clinical data at time of CT and thermodilution measurement, respectively

All Female patients Male patients

n (%) 103 (100) 38 (36.9) 65 (63.1)

ICU scoring

APACHE II 26 (21–31) 27 (20–32) 25 (22–30)

SAPS II 56 (45–67) 54 (43–63) 58 (46–68)

SOFA 11 (9–13) 11 (9–14) 11 (9–13)

Patients receiving catecholamines, n (%)

Adrenaline 4 (3.9) 1 (2.6) 3 (4.6)

Dobutamine 7 (6.8) 2 (5.3) 5 (7.7)

Norepinephrine 101 (98.1) 37 (97.4) 64 (98.5)

Norepinephrine dose at time of TD measurement, μg/kg/min 0.27 (0.11–0.52) 0.32 (0.12–0.53) 0.20 (0.11–0.47)

Norepinephrine dose at time of CT, μg/kg/min 0.26 (0.11–0.50) 0.30 (0.11–0.51) 0.25 (0.11–0.50)

Patients receiving another cardiovascular agent, n (%)

Enoximone 10 (9.7) 3 (7.9) 7 (10.8)

Nitroglycerine 3 (2.9) 2 (5.3) 1 (1.5)

Vasopressin 2 (1.9) 1 (2.6) 1 (1.5)

Patients receiving more than one cardiovascular agent, n (%) 21 (20.4) 7 (18.4) 14 (21.5)

Parameters of mechanical ventilation at time of
thermodilution measurement

PEEP, mmHg 10 (9–13) 10 (9–12) 10 (9–13)

f, 1/min 21 (18–25) 20 (17–24) 22 (18–26)

VT, l 0.49 (0.40–0.55) 0.41 (0.33–0.49) 0.51 (0.46–0.57)

Parameters of mechanical ventilation at time of CT

PEEP, mmHg 10 (9–13) 10 (9–13) 11 (9–13)

f, 1/min 21 (17–25) 21 (17–25) 22 (18–25)

VT, l 0.49 (0.40–0.55) 0.40 (0.36–0.49) 0.52 (0.46–0.56)

Time span between CT and thermodilution
measurement, hours

1 (-1–3) 0 (-1–3) 1 (-1–3)

Fluid balance between CT and thermodilution
measurement, ml

-10 (-198–258) 0 (-94–434) -31 (-289–128)

Continuous veno-venous hemodialysis, n (%) 20 (19.4) 6 (15.8) 14 (21.5)

CVC position

V. jugularis, n (%) 48 (46.6) 20 (52.6) 28 (43.1)

V. subclavia, n (%) 40 (38.8) 13 (34.2) 27 (41.5)

V. femoralis, n (%) 15 (14.6) 5 (13.2) 10 (15.4)

Aortic aneurysm, n (%) 2 (1.9) 0 (0) 2 (3.1)

Status post-OAR or EVAR, n (%) 5 (4.9) 0 (0) 5 (7.7)

APACHE II acute physiology and chronic health evaluation II, CVC central venous catheter, EVAR endovascular aortic
aneurysm repair, ICU intensive care unit, OAR open aortic repair, SAPS II simplified acute physiology score, SOFA
sequential organ failure assessment. Data are presented as median (interquartile range) or number (frequency in percent)
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Dependencies of GEDV and GEDVI on biometric parameters

Median GEDV in all patients was 1306 ml (IQR 1104 to 1569 ml). Median GEDVI was

730 ml/m2 (IQR 627 to 871ml/m2).

GEDV increased by 7.4 ml (95% CI 4.1 to 10.7 ml, p < 0.001) per year of patient

age. Per kilogram increase in body weight, GEDV increased by 5.2 ml (95% CI 1.7

to 8.6 ml, p = 0.003). After correction for age and weight, GEDV showed no sig-

nificant dependency on height and sex. These relationships persisted after indexing

GEDV by body surface area based on predicted body weight. GEDVI increased by

4.2 ml/m2 (95% CI 2.3 to 6.2 ml/m2, p < 0.001) per year of age and by 2.8 ml/m2

(95% CI 0.9 to 4.7 ml/m2, p = 0.004) per kg body weight, while height and sex

showed no significant relationship.

In patients with a femoral central venous line, GEDV was 438 ml (95% CI 235 to 641

ml, p < 0.001) larger than in patients with jugular or subclavian central venous catheter.

Likewise, GEDVI was 230ml/m2 (95% CI 89 to 370 ml/m2, p = 0.002) larger in patients

with a femoral venous line.

Time differences, fluid balances, changes in ventilator settings, or the level of vaso-

active drugs between thermodilution measurements and CT scans were without signifi-

cant impact on GEDV (p > 0.05 for each comparison). GEDV measurements showed a

coefficient of repeatability of 4.3%.

Dependence of GEDV on central venous and aortic volume

A total of 38.4% of the variance of GEDV was explained by patient-specific biometric

characteristics including age, sex, body weight, and body height. We then sequentially

added the volumes of either the vena cava, the aorta, or both to this initial model.

Table 3 Aortic and vena cava length and volume derived from CT scans and physiologic values
from transpulmonary thermodilution measurements

All Female patients Male patients

n (%) 103 (100) 38 (36.9) 65 (63.1)

Aortic length, cm 55.2 (51.0–60.2) 50.8 (47.5–56.6) 56.4 (53.8–61.5)

Aortic volume, ml 194 (147–249) 158 (126–207) 213 (169–287)

Vena cava length (femoral CVC), cm 32.1 (27.8–33.4) 32.5 (31.1–38.1) 28.6 (21.5–32.6)

Vena cava volume (femoral CVC), ml 127 (93–155) 162 (150–188) 98 (77–122)

HR, 1/min 86 (74–103) 84 (74–100) 89 (71–105)

MAP, mmHg 83 (73–93) 84 (74–96) 83 (72–92)

CO, l/min 6.4 (5.3–7.8) 5.6 (4.9–6.8) 6.8 (5.8–8.2)

CI, l/min/m2 3.3 (2.8–4.0) 3.1 (2.6–3.9) 3.4 (2.9–4.2)

GEDV, ml 1306 (1104–1569) 1129 (990–1283) 1437 (1169–1658)

GEDVI, ml/m2 730 (627–871) 709 (627–840) 738 (628–894)

EVLW, ml 603 (510–781) 540 (462–619) 649 (528–829)

EVLWI, ml/kg 9.7 (7.8–11.6) 9.9 (8.7–11.5) 9.3 (7.7–11.7)

MTt, s 20.9 (17.7–27.3) 19.4 (17.4–27.3) 21.1 (17.9–27.4)

DSt, s 8.4 (7.2–11.3) 8.4 (7.2–10.9) 8.5 (7.2–11.3)

CI cardiac index, CO cardiac output, CVC central venous catheter, EVLW extravascular lung water, EVLWI extravascular
lung water index, GEDV global end-diastolic volume, GEDVI global end-diastolic volume index, HR heart rate, MAP mean
arterial pressure, DSt down slope time, MTt mean transit time. All data is presented as median (interquartile range)
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Inclusion of the volume of the vena cava raised the explained variance of GEDV to

47.8%. After adding the aortic volume to the basic model instead of the volume of the

vena cava, explained GEDV variance was 59.3%. Combining both aortic and venous

volume led to an explained variance of GEDV of 63.8%. In each model where the aortic

volume was included, all biometric parameters lost their significance (Table 4).

Analysis of GEDV components

In the final regression model including both aortic volume and the volume of the vena

cava, GEDV increased by 3.0 ml (95% CI 2.0 to 4.1 ml, p < 0.001) per ml of aortic vol-

ume and by 2.1 ml (95% CI 0.5 to 3.7 ml, p = 0.01) per ml of vena cava volume. Plotting

the data suggested a linear relationship between the aortic volume and GEDV (Fig. 3).

Measured GEDV consists of a “venous,” a “central,” and an “aortic” part (see

Methods). Assuming the linear relationships found above allowed for estimation of

single proportions of GEDV. The aortic part was in median 49% (IQR 40 to 58%)

of measured GEDV. In case of a femoral central venous line, the venous part esti-

mated in median to 14% (IQR 14 to 17%). The central part was in median 50%

(IQR 40 to 57%) of measured GEDV. The central and venous parts did not depend

on biometric parameters, while the aortic part had significant relationships with

age and weight (p < 0.001 and p = 0.009, respectively).

To get further insight, we examined the influence of aortic volume on the different vari-

ables required for GEDV calculation: MTt, DSt, and CO. The largest impact was on MTt,

with 3.5 s (95% CI 1.4 to 5.5 s, p = 0.001) per 100ml of aortic volume. Additionally, MTt

showed a hyperbolic decline with raising values of CO (p < 0.001). CO was larger in pa-

tients with higher aortic volume, 0.5 l/min (95% CI 0 to 1 l/min, p = 0.041) per 100ml aor-

tic volume. DSt enlarged by 0.8 s (95% CI 0 to 1.7 s, p = 0.048) per 100ml aortic volume.

Discussion
As main finding, we confirmed the hypothesized relationship between GEDV and aortic

volume. Aortic volume determines the value of GEDV to a larger extent than any bio-

metric parameter, including a patient’s age, sex, body weight, and height.

Table 4 Statistical significance of confounding variables for GEDV

Statistical model (1) Basic model: biometric
descriptors

(2) Basic model +
V. cava

(3) Basic model
+ aorta

(4) Basic model + aorta
+ V. cava

Age p < 0.001 p < 0.001 p > 0.05 p > 0.05

Male sex p > 0.05 p > 0.05 p > 0.05 p > 0.05

Height p > 0.05 p > 0.05 p > 0.05 p > 0.05

Weight p = 0.003 p = 0.002 p > 0.05 p > 0.05

Aortic volume p < 0.001 p < 0.001

Vena cava volume p = 0.003 p = 0.009

Explained variance 38% 48% 59% 64%

Difference to
previous model

p < 0.001 p < 0.001 p < 0.001

Multivariate statistical models investigate (1) the dependence of GEDV values on age, male sex, height, and body weight
(basic model); (2) the biometric parameters from the basic model and additionally the volume of the vena cava; (3) the
parameters from the basic model and additionally the aortic volume; and (4) the parameters from the basic model with
biometric descriptors and both vena cava volume and aortic volume. Values in italics indicate significance
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Relevance of central venous and aortic volumes for GEDV measurement

It is well accepted and confirmed by our data that femoral central venous lines should be

accounted for when interpreting GEDV measurements [23–25]. However, our results

show that the aortic volume had an even larger, predominant influence by explaining

roughly 60% of GEDV variance. As the aortic volume is anatomically placed after the

heart, our findings challenge the view of GEDV as a cardiac preload parameter.

It is important to mention that our measurements of the aortic diameter, length, and

volume as well as estimated aortic mean transit times are in line with published data

[11, 26–30].

Analysis of influences on thermal volume

Contrast bolus traverse through the aorta led to a larger increase in GEDV than ex-

pected by considering plain aortic volume. Two interacting causes may be suggested.

First, theory of single-indicator transpulmonary thermodilution requires a closed circu-

lation between injection and detection site [14]. Thoracic and abdominal branches of

the aorta invalidate this prerequisite. Second, the flow along the aorta is not laminar

but turbulent and helical [31–33]. Both potential causes would challenge the assump-

tion of CO times MTt being equal to the traversed volume.

In patients with a femoral central venous line, similar considerations concerning the

necessary prerequisites apply. The vena cava inferior has influx from abdominal and

hepatic veins, thus not resembling a closed system as required for calculation of GEDV

from the thermodilution curve.

Fig. 3 Relationship of global end-diastolic volume (GEDV) and aortic volume. Blue line indicates the
regression line, with its 95% confidence interval marked in grey. Green dots represent measurements with
central venous lines placed in the vena cava superior, red dots in the vena cava inferior
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Concerns against indexing GEDV

Indexing of a physiological parameter intends to remove inter-individual variations

to facilitate comparison between patients and derive normal ranges. From a math-

ematical point of view, indexing represents a linear regression, which may be de-

fined by two points only. One is the mean of the parameter to be indexed and the

mean of the index. The second point is the origin, where both the parameter and

the index are zero, usually far away from physiologic ranges. Therefore, the slope

of the regression line is mainly determined by the origin as a gross outlier. This

may lead to the removal of existing correlations, but also generation of correlations

not present in the original data [34–36].

Obviously, indexing GEDV can be performed numerically, but this does not

imply that the result is meaningful. The relevant confounder of GEDV, the aortic

volume, is cumbersome to achieve and usually not known. Therefore, indexing by

aortic volume is not applicable. In current practice, GEDV indexation is per-

formed with predicted body surface area derived from height. In our data, height

was no significant confounder. In contrast, a dependency of GEDV on age and

weight was present before, but also after indexing by predicted body surface area.

Furthermore, the central part of GEDV had no relationship with any biometric

parameter, while the aortic part was dependent on age and weight. The ratio be-

tween both parts varies from patient to patient. The quest for reference ranges of

GEDV is further complicated when femoral central venous lines are taken into

account. Therefore, there is little to support a scientifically validated and clinic-

ally useful indexation.

Clinical implications

We interpret our data that the numeric value of GEDV reflects the intravascular volume

status of a patient, with preload being a minor contributor and not the dominant part.

Future, prospective work may address the impact of volume loading, vasopressors, or

mechanical ventilation on venous, central, and aortic components of GEDV. It is likely

that this impact is different on each component, given that a controlled volume loss

affects the diameter of the vena cava more than that of the abdominal aorta [37]. How-

ever, current transpulmonary thermodilution technology does not allow to distinguish be-

tween the different parts of measured GEDV. Its value is partially dependent on the aortic

volume, which is itself being associated with age, sex, and weight. As a consequence, any

treatment decision aiming for standardized normal values of GEDV/GEDVI may be bene-

ficial in one patient but detrimental in another. Variations between successive measure-

ments may have clinical importance [4], but require further study, in our opinion.

Limitations

Missing knowledge of the effect size rendered planning of a prospective study impos-

sible. However, electronic recording guaranteed data accuracy and we are unaware of

any systematic bias concerning patient selection.

Our population was treated in a neurosurgical ICU. While this may be considered a

limitation, we want to point out that subjects presented with hemodynamic instability

due to various causes, were on vasopressors and required mechanical ventilation. In
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our opinion, this reflects a typical scenario where transpulmonary thermodilution mon-

itoring may be applied.

Central venous lines used were multi-lumen catheters of different brands. Per clinical

standard, we mount the venous thermistor for transpulmonary thermodilution on the

side arm of the first 3-way stopcock on the distal lumen. Occasional use of a different

ports or failure of correct placement of the catheter tip at the entrance of the right

atrium in case of jugular or subclavian central venous lines may have induced a minor

error we were unable to correct for.

Conclusion
We provide evidence that the aortic volume mainly accounts for the variability of GEDV

measured by single-indicator transpulmonary thermodilution with a femoral arterial line.

Therefore, GEDV should not be considered to reflect the cardiac preload status of a

patient. Furthermore, we were unable to provide a scientific physiological rationale for

indexing GEDV. As a consequence, guiding individual volume therapy by reference ranges

of GEDV or GEDVI may be misleading.
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