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Abstract

Background: An efficient and accurate method of respiratory rate measurement is
still missing in hospital general wards and triage. The goal of this study is to propose
a method of respiratory rate measurement that has a potential to be used in general
wards, triage, and different hospital settings with comparable performance. We
propose a method of respiratory rate measurement that combines a unique
wearable platform with an adaptive and optical approach. The optical approach is
based on a direct-contact optical diffuse reflectance phenomenon. An adaptive
algorithm is developed that computes the first respiratory rate and uses it to select a
band. The band then chooses a set of unique optimized parameters in the algorithm
to calculate and improve the respiratory rate. We developed a study to compare the
proposed method against reference manual counts from 82 patients diagnosed with
respiratory diseases.

Results: We found good agreement between the proposed method of respiratory
rate measurement and reference manual counts. The performance of the proposed
method highlighted deviations with a 95% confidence interval (C.I.) of − 3.34 and
3.67 breaths per minute (bpm) and a mean bias and standard deviation (STD) of
0.05 bpm and 2.56 bpm, respectively.

Conclusions: The performance of the proposed method of respiratory rate
measurement is comparable with current manual counting and other respiratory rate
devices reported. The method has additional advantages that include ease-of-use,
quick setup time, and being mobile for wider clinical use. The proposed method has
the potential as a tool to measure respiratory rates in a number of use cases.

Keywords: Respiratory rate, Automated, Technology, General wards, Breathing
pattern, Manual counts

Background
Respiratory rate is one of the most predictive [1–3] and earliest vital signs [4] signaling

change in clinical status of patients. Despite this, respiratory rate is also one of the

most neglected [5], underutilized, and least recorded [6] vital signs. Several reasons

exist for this. Nurses do not often have time, due to heavy workloads and other con-

cerns, to complete a full 60-s measurement by manual counts [5]. Often, a 30-s or 15-s
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assessment that is multiplied by 2 or 4 is performed that leads to inaccuracies [7, 8].

Poor visibility of the start and end of a breath, interruptions, moving patients, difficulty

in counting, or remembering a count can lead to further errors [9].

Technologies to automate respiratory rate measurement can alleviate such issues associ-

ated with manual counting. Ginsburg et al. [10] provide an organized and exhaustive list

of technologies to measure respiratory rate, grouping them in the way the respiratory rate

is measured. Most technologies however are yet to be adopted widely in general care due

to their respective limitations. Inductance plethysmography, capnography, piezoelectric,

or bioimpedance-based sensors can be used to measure respiratory rate directly. They

however can suffer from usability issues, for example, difficulty in getting patients to wear

straps around the chest [11]. Acoustic-based sensors can also be used to measure respira-

tory rate directly. Their performance can however be influenced by environmental noise

[12]. Respiratory rate can also be indirectly extracted from electrocardiography (ECG) or

photo-plethysmograph (PPG) signals. However, these methods can suffer from accuracy

issues despite advancements in signal processing [13].

In this paper, we present a new method of respiratory rate measurement that com-

bines a unique wearable platform for ease of measurement and an accurate and adap-

tive non-invasive optical approach based on the optical diffuse reflectance phenomenon

[14]. The novelty of the presented approach is the use of a unique wearable platform

and a non-invasive vertical-cavity surface-emitting laser (VCSEL) driven diffuse reflect-

ance based method, to adaptively and directly measure respiratory rate. The approach

uses a VCSEL diode that emits coherent optical radiation on a rest position on chest at

micro-Watt emission levels, and uses an integrated photodetector on a second nearby

position on chest to sense a diffused collected signal intensity. The stretching of the

skin due to thoracic movement results in a net path change and that causes a change

in signal intensity at the detector, with a period that corresponds to the respiratory rate.

An adaptive signal processing method is used to enhance the device respiratory rate

measurements by splitting the signal processing optimizations across different respira-

tory rate bands.

Methods
Setting and participants

A study was designed to benchmark the respiratory rate measure from the proposed

method to manual counts (number of breaths per minute). A total of 100 adult inpa-

tients were recruited from the Changi General Hospital, Singapore, between April 11,

2018, and January 16, 2019, in a single arm trial. The Singhealth Centralized Institu-

tional Review Board (IRB) approval was attained for this study (IRB Ref. 2017/2961).

The patients recruited were diagnosed with respiratory diseases of asthma, chronic ob-

structive pulmonary disease (COPD), or pneumonia from the general wards. Out of the

100 patients recruited, 4 patients had data corrupted during monitoring, while 14 pa-

tients had unexpected interruptions during all manual counts. The 4 corrupted data

were due to saturation in the detected signal. This was remedied for subsequent pa-

tients. The 14 patients with interruptions over all manual counts were due to persistent

coughing, hence, blocking line-of-sight. Interruptions occurred when another medical

staff interrupted ongoing manual counts or when the patients coughed badly to block
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line-of-sight during manual counts. Such interruptions were noted on case report

forms. Eighty-two patients were finally selected for analysis. Minimum sample size was

determined using a 1 sample, 2-sided t test. A first estimate of mean and standard devi-

ation from 20 volunteers was determined as 1.06 and 2.22, respectively. A second estimate

of mean and standard deviation from 56 volunteers at Saw Swee Hock School of Public

Health (IRB: S-17-349) was determined as 1.72 and 2.34. This resulted in an upper sample

size of 69 for 80% power at.05 significance. Similar sizes were used in [15].

Protocol

Manual counts were used as reference respiratory rates. To ensure consistency and

eliminate variations, a single dedicated and trained medical staff was deployed to ob-

serve and manually count respiratory rates. They were taken over 5 min for every pa-

tient at 1-min intervals. A total of 4 manual counts per patient were recorded in 5 min.

For every patient, electronic and manual recordings were started concurrently. From the

electronic recordings, respiratory rates were calculated at the exact 60 s when manual re-

cordings were recorded. They were then benchmarked for comparative analysis. All man-

ual counts and diagnosis were reported on case report forms by hospital medical staff.

Method of respiratory rate measurement based on VCSEL driven diffuse reflectance and

adaptive “sub-banding”

The method of respiratory rate measurement combined a unique wearable platform

with a VCSEL driven optical diffuse reflectance approach to measure respiratory rate

while breathing. The platform emitted a VCSEL-based coherent light onto a rest pos-

ition on skin (labeled Io in Fig. 1) and collected diffused light from a second position

on skin (labeled Ir in Fig. 1). The diffused light consisted of a vibrational component

that corresponded to the stretching of the skin. Figure 1 highlights this method.

For efficient clinical use, a unique wearable platform design was developed. The wear-

able consisted of a sensor and a disposable patch. The sensor housed the VCSEL, inte-

grated photo-sensor, microprocessor, and a Bluetooth module. A disposable patch was

used to allow light emission from the sensor to be in touch with the skin. One side of the

patch was a medical-grade transparent adhesive that stuck to the skin and the other side

was a hook-and-loop fastener that connected to the sensor. In the center of the patch was

a transparent window that allowed light emission and collection. Figure 2a shows the

patch and sensor module that had dimensions of 3.8 cm × 3.8 cm × 1.1 cm and a weight

Fig. 1 Optical diffuse reflectance approach that is used to extract respiratory rate from the diffused
collected signal
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of about 17.3 g. Figure 2b highlights the use of the sensor on a top-left side of a

subject’s chest from a side view. Figure 2c shows the front-view use of the device.

The average setup time of the device on a subject was 16.1 s. Figure 3a shows an

example of the signal intensity at the output of the photo-sensor, after moving

average and baseline removal. As can be seen, the signal corresponds to a breath-

ing pattern at a rate equal to the respiratory rate. This breathing pattern was a dir-

ect measurement of the thoracic movement. Figure 3b shows the Fourier transform

of the signal that verifies the respiratory rate as 0.3 Hz and further shows the

higher-order harmonics.

Analysis

Preprocessing operations were applied to the raw signal before respiratory rate was ex-

tracted. A moving average filter was used to remove high-frequency noise and a base-

line filter was used to remove any baseline drifts. A motion artifact filter using the

Teagar operator [16] was used to identify and correct for motion. Data was then buff-

ered into windows of 60 s, from which, respiratory rate was extracted using a fast time-

domain-based algorithm [17].

An adaptive approach was used so as to develop optimized parameters for calculation

of respiratory rates based on different respiratory rate bands—an approach labeled as

“sub-banding” in this paper. The “sub-banding” approach calculated the first respiratory

rate in every window of 60 s, and then determined which range this rate fell in, before

Fig. 2 a Wearable sensor and patch, b side view use of the wearable platform, and c front-view use of the
wearable platform

Fig. 3 Plots of a signal from photo-sensor. b Fourier transform showing 1st harmonic that is respiratory rate
and the multiple higher-order harmonics
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applying a second set of optimized parameters to correct the respiratory rate. Hence,

each “sub-band” consisted of its own set of optimized parameters. For example, con-

sider there were 3 “sub-bands” defined as 0–15, 16–25, and 26–40 bpm. For each of

these “sub-bands,” the parameters of the time-domain-based algorithm [17] that was

used to calculate the respiratory rate were uniquely defined. For instance, the number

of moving-average filter points (to remove high frequency noise) was defined as 15

points in a lower respiratory band of 0–15 bpm. On the other hand, a lower number of

moving-average filter points were defined as 9 in a higher respiratory band of 26–40

bpm. This was to prevent removal of higher frequency components that might have

been misinterpreted as noise otherwise. Such optimizations within bands of respiratory

rate could improve the quality of the calculation.

Deviations between the device respiratory rate and manual counts were exactly calcu-

lated at intervals of 1 min across the 82 subjects. Statistical analysis was then performed

on the distribution of deviations with mean, standard deviation, and the 95% confi-

dence intervals extracted.

Results
The demographics of the study are presented in Table 1.

Figure 4 is a box plot showing the deviation between the proposed method of respira-

tory rate measurement and manual counts, in bpm, over 4 different cases. Case 1 corre-

sponds to deviations from only non-interrupted manual counts (64 subjects) and

without the adaptive “sub-banding” (normal). Case 2 corresponds to deviations from

only non-interrupted manual counts but with adaptive “sub-banding.” Case 3 corre-

sponds to deviations with interrupted manual counts (82 subjects) and without adaptive

“sub-banding.” Case 4 corresponds to deviations with interrupted manual counts but

with adaptive “sub-banding.” For adaptive “sub-banding,” the bands defined are 0–20,

20–27, and 27–50 bpm. Table 2 highlights these different cases and further notes the

mean bias, standard deviation, and 95% confidence intervals of deviations across all 4

cases (in bpm).

Table 1 Demographics of study

Characteristics

Male sex (of the 82 included), n (%) 45 (54.9%)

Age, year (of the 82 included), mean (SD) 53.7 (16.7)

Patient type (total)

Total recruited 100

Corrupted data 4

With all manual counts interrupted 14

With all manual counts non-interrupted 64

With at least one manual count non-interrupted 82

Diagnosis (of the 82 included)

COPD 14

COPD and asthma 5

Asthma 31

Pneumonia 32
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From the box plot, we can observe that all deviations (across the 4 cases) lie within a

box interval of 2 bpm and lie within the whisker interval of 8 bpm across the median

that is centered near 0 bpm. From Table 2, we can observe that the amount of devi-

ation increases when interrupt cases are included. We can also observe that the use of

adaptive “sub-banding” reduces the deviations. Specifically, with interrupt cases and

with the adaptive feature, the 95% confidence intervals lie within the range of − 4–4

bpm. Figure 5 shows the Bland-Altman plots for case 3 and case 4. From these plots,

we can observe that the spread in deviation is smaller and more tighter for case 4 (with

“sub-banding” algorithm (Fig. 5b)) compared to case 3 (without “sub-banding” algo-

rithm (Fig. 5a)). The sub-bands have been indicated with vertical lines in Fig. 5b. The

range of the observed respiratory rate across all patients is 6–41 bpm.

Figure 6 illustrates the performance of the proposed method of respiratory rate meas-

urement using the “sub-banding” algorithm (case 4) across patients of 2 age groups—

more than and equal to 55 years of age and patients less than 55 years of age. As can be

deduced from Fig. 6, the minimum and maximum whiskers of all age groups, less than

55 years and more than or equal to 55 years, lie within deviations of − 4 and + 4 bpm.

Discussion
We demonstrated a method of respiratory rate measurement that combined a unique

wearable platform and an adaptive optical-based approach. Respiratory rate was directly

measured using the device on 82 patients and benchmarked against reference manual

counts that were measured by a single dedicated and trained medical staff. An adaptive

method that optimized the parameters on the device was also proposed where the

Fig. 4 Box plot of deviations between the proposed method of respiratory rate measurement and manual
counts, across 4 cases (see Table 2)

Table 2 Table highlighting bias, standard deviation, and 95% confidence intervals for the different
test cases

Case Manual count type Signal processing type Bias STD 95% C.I.

1 Exclude interrupts Normal 0.16 2.38 (− 3.88, 4.40)

2 Exclude interrupts Adaptive sub-banding − 0.12 2.34 (− 3.48, 3.40)

3 Include interrupts Normal 0.17 2.71 (− 3.78, 5.08)

4 Include interrupts Adaptive sub-banding 0.05 2.56 (− 3.34, 3.67)
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initial respiratory rate measure was used to select the band from which a set of

optimization parameters was used to correct for the first respiratory rate measure.

We found good agreement between the proposed method of respiratory rate meas-

urement and reference manual counts. The performance of the proposed method

highlighted deviations with a 95% confidence interval of − 3.34 and 3.67 bpm and with

a mean bias and standard deviation of 0.05 bpm and 2.56 bpm, respectively.

This performance was comparable with performances of other respiratory rate devices

reported, as shown in Table 3. The Bland-Altman plots in Fig. 5 further verified the adap-

tive approach of “sub-banding” in improving the performance of the overall algorithm.

There were 5 primary outliers from the Bland-Altman plot of Fig. 5a. The corresponding

mean respiratory rates were 23 bpm, 19 bpm, 26 bpm, 23 bpm, and 22 bpm. The corre-

sponding deviations were 10.77, 7.45, − 9.9, − 9.98, and − 12.1, respectively. The 1st and

2nd readings corresponded to patient IDs 7 and 83, while the 3rd, 4th, and 5th readings

all corresponded to patient ID 86. Possible reasons for such outliers included coughing

for patient IDs 7 and 83, and fast and shallow breathing for patient ID 86.

In addition to the proposed method’s performance, the proposed method possessed

several other advantages that may be useful for clinical implementation. Firstly, the

Fig. 5 Bland-Altman plots of a case 3 (no “sub-banding”) and b case 4 (with “sub-banding”)

Fig. 6 Box plot of deviations between the proposed method of respiratory rate measurement and manual
counts for case 4 (see Table 2) and across 2 different age groups
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proposed method used a direct way to measure respiratory rate, unlike methods of

PPG or ECG, hence, may require fewer computational steps with direct processing of

respiratory rates on sensor. Secondly, the proposed method used an optical-based ap-

proach that is potentially less susceptible by environmental noise, compared to, for ex-

ample, acoustic methods. Furthermore, an optical-based approach may allow the sensor

to double up as a pulse oximeter. Thirdly, the proposed method was worn on the chest

with quick setup times of average 16.1 s. The sensor module itself can be removed if

the patient needs to shower, while leaving the patch on the chest, for the sensor to be

replaced for a subsequent set of measurements. The minimum time to read out and

analyze data from a mobile platform was 1 min.

The proposed method of respiratory rate measurement did present limitations and

some cautionary efforts. Firstly, patients with hairy chest did experience some discom-

fort when removing the patch from skin. This however was overcome by using thinner,

more conformable, hypoallergenic, and less-discomforting types of medical grade

patches, some of which had been experimented and verified in this study. Secondly, the

sensors were susceptible to motion artifacts. To overcome this, signal processing was

implemented to detect and remove/correct for motion artifacts. Thirdly, caution had to

be taken not to use the VCSEL light sources at very high powers. These sources are

highly coherent and prolong usage at high powers could possibly cause reactions, al-

though VCSELs are well performing and can provide better results. Very low emission

levels have thus been used in this study at the order of micro-Watts without any cases

of reactions/adverse events over the 100 patients. Fourthly, the present study and

method was limited to adult patients. Fifthly, the present study was limited to breathing

rates between 6 and 41 bpm. Any impact due to Bluetooth interference was minimal as

the device used a low-energy Bluetooth transmitter and satisfied the Federal Communi-

cations Commission limit of field strength for medical equipment.

Moving forward, the authors aim to test and explore the proposed method of respira-

tory rate measurement for several possible use cases. Such use cases include the use of the

device for continuous monitoring of respiratory rates (and other breathing features) and

to use these rates/features in analytics to better predict deterioration (e.g., COPD exacer-

bations [19]) in home settings [19–21] and inpatient [22]. The authors also aim to con-

sider the device for other clinical applications that include monitoring sleep [23]. Another

possible use case is to use the proposed method to extract newer feature sets from re-

spiratory patterns and to use these feature sets to develop newer classifiers, for example,

to quickly screen a patient suffering from COPD or asthma. The authors further aim to

expand beyond the adult age group and to test and explore use cases of this device on

children, specifically those aged < 16 years, as well as a wider coverage of breathing rates

Table 3 Table comparing the performance of other respiratory rate devices reported in literature
and the proposed method of respiratory rate measurement

Device Bias STD 95% C.I.

Medtronic Nellcor Pulse Oximetry [15] 0.07 1.99 (− 3.84, 3.97)

Masimo RRa [18] 0 1.0 (− 1.9, 1.9)

Nihon impedance pneumography [18] 0.4 5.9 (− 11.1, 11.9)

Proposed method 0.05 2.56 (− 3.34, 3.67)

Bias, standard deviation, and 95% confidence interval are all in bpm

Singh et al. Intensive Care Medicine Experimental            (2020) 8:15 Page 8 of 10



Conclusion
We have proposed a method of respiratory rate measurement by combining a unique

wearable platform and an accurate and adaptive VCSEL based diffused reflectance ap-

proach. The performance of the proposed method of respiratory rate measurement is

shown to be comparable to current manual counting for respiratory rate. The perform-

ance is also comparable with those of other respiratory rate devices reported in litera-

ture. The proposed method has also additional advantages of being easy-to-use, quick

to setup, and mobile.
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