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Introduction
Sepsis was redefined in 2016 as life-threatening organ dysfunction caused by a dysregu-
lated host response to infection [1]. This definition encompasses a group of patients that 
is heterogeneous in both clinical features and underlying pathophysiology. The patho-
physiology of sepsis is multi-facetted and highly complex: it can involve concurrent 
immune overactivation and suppression, activation of the complement system, coagu-
lopathy, endothelial dysfunction, gut microbiome disruption, and metabolic reprogram-
ming of immune cells [2, 3]. While sepsis is a leading cause of global mortality, targeted 
therapies remain unavailable, making increased understanding of its pathophysiology 
crucial for improving clinical care and outcomes [4–6].

An increasing number of investigations is seeking to unravel the complexity of sep-
sis through high-dimensional data analysis. Technological advance increasingly enables 
-omics measurements of all constituents of a molecular layer—such as RNA, proteins, or 
metabolites—to provide an unbiased view of ongoing disease processes. Three common 
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goals for utilizing this methodology in clinical sepsis research are studying the host 
response, developing diagnostics and discovering clinically relevant clusters. However, 
it remains challenging to combine these data into an overarching model of the mecha-
nisms that govern sepsis pathophysiology and clinical outcomes.

Here, we summarize progress of high-dimensional investigations in the following 
major -omics fields, roughly following the central dogma of molecular biology: genom-
ics, epigenomics, transcriptomics, proteomics, lipidomics, and microbiomics. Data are 
regarded as high-dimensional when the number of measured features exceeds the num-
ber of samples. We bring attention to studies that represent important advances in the 
field or exemplify a specific topic; this narrative review is not intended to constitute an 
exhaustive synopsis of the literature. We focus on what these fields can teach us about 
sepsis, and highlight current trends and future challenges (Table 1). High-dimensional 
investigations mainly using clinical data are not included, as we focus on research in 
human biological samples. Finally, in the last paragraphs we explore the potential and 
remaining challenges of integrating multiple -omics (multi-omics) data.

Genomics

The field of genomics focuses on the structure, mapping, editing and function of 
genomes. One of the main goals of genomics is to identify genetic variants in the human 
genome that causally influence the risk of diseases. This can be accomplished by a 
genome wide association study (GWAS), in which millions of single-nucleotide poly-
morphisms (SNPs) throughout the genome are measured in a case–control design. Each 

Table 1  Selected highlights of advances per -omics field

Genomics A number of genetic variants have been strongly linked to sepsis susceptibil‑
ity and survival. The downstream effects of these variants are beginning to 
be uncovered

Epigenomics The epigenetic regulation of gene transcription is an emerging field of research 
in sepsis. First results show methylation of a large proportion of genes involved 
in the immunological response, which relates to clinical features like disease 
severity

Transcriptomics Several diagnostic gene sets have been identified that can discriminate between 
types of inflammation. Transcriptome-based clustering can delineate pathophysi-
ologically and prognostically relevant endotypes. In the near future, such tools 
could potentially guide personalized clinical therapy or the design of sepsis trials 
aimed at specific patient groups

Proteomics Plasma proteomics revealed profiles related to clinical outcome, and perturbed 
energy metabolism pathways in patients with sepsis. Proteomics in specific 
cell subsets could pinpoint these alterations, possibly yielding targets for cell 
metabolism modulation

Lipidomics & metabolomics Lipid- and metabolite signatures in plasma have been correlated with clinical 
outcomes in patients with sepsis. Cellular lipidomics and metabolomics could 
provide insight into structural changes and metabolic reprogramming of cells 
during infection

Microbiomics Sepsis and antimicrobial therapy are associated with a disrupted gut microbiome, 
which has been linked to secondary infections and hospital readmissions. Next 
steps include identifying causal mechanisms and developing therapies aimed at 
restoring the healthy microbiome

Multi-omics Simultaneously analyzing multiple molecular layers holds great potential for 
improving our understanding of sepsis pathophysiology. For inter-study compa-
rability, transparency of the bioinformatic process must be a focal point
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subject is genotyped using a SNP array chip which directly measures usually up to 1 mil-
lion variants across the genome, from which many more variants (e.g., > 90 million) can 
be imputed [7].

The fact that infectious diseases are known to have caused widespread mortality in 
children and young adults (before and during reproductive age) makes infectious patho-
gens arguably one of the strongest selective evolutionary forces to have acted on human 
populations [8]. Thus infectious pathogens are postulated to have shaped the human 
genome, such as by increasing the allele frequency of protective variants in immunity-
related genes. The link between host genetics and survival from infectious diseases was 
strongly substantiated by the landmark study of Sørensen and colleagues, who reported 
that adult adoptees had a 5.8-fold increased risk of dying from infection if one of their 
biologic parents died of infection before the age of 50 [9]. Noteworthy is that this risk 
exceeded the risk of dying of cancer or cardiovascular disease. Discovering the genetic 
variants causally related to infectious disease mortality/survival, and understanding the 
corresponding physiological mechanisms present promising translational opportunities 
for novel therapeutics in sepsis.

To date, most GWA studies in the context of sepsis have focused on outcomes after 
developing sepsis, such as 28-day mortality [10, 11]. In this type of study design, all cases 
and controls have sepsis and the case/control status is defined by the patient’s mortality 
outcome. These studies have revealed SNPs in genes such as FER, but the exact mech-
anisms through which these polymorphisms exert their protective or harmful effect 
remains to be elucidated. For instance, the presence of the s4957796 SNP in the FER 
gene was found to significantly improve survival in sepsis patients, possibly through the 
role of FER in the regulation of cell adhesion, leukocyte recruitment and intestinal bar-
rier dysfunction [10]. It is important to note that the FER variant was only found to be 
associated with survival in sepsis due to pneumonia and was not associated with mortal-
ity in a more heterogeneous cohort of patients with sepsis due to either abdominal infec-
tions or pneumonia, indicating that different mechanisms may be involved depending 
on the site of infection [11].

In addition to identifying variants that influence survival after developing sepsis, a sec-
ond goal is to find variants that influence the risk of developing sepsis. A meta-analysis of 
candidate gene studies (targeting suspected genes) reported a number of SNPs in genes 
coding for pattern recognition receptors and cytokines significantly associated with the 
risk of developing sepsis, including TLR4rs4986790 and TNFArs1800629, respectively, 
both investigated in more than 25 studies [12]. As Toll-like receptors (TLRs) are vital for 
innate immune cells to recognize pathogens, and tumor necrosis factor alpha (TNF-α) 
is an important pro-inflammatory cytokine, genetic variants of these genes could poten-
tially strongly influence the host response during infection. To date, it remain uncertain 
whether such SNPs indeed mediate the risk of developing sepsis. GWA studies with a 
design in which cases are sepsis patients and controls are from the general population 
could further investigate this, although to our knowledge such studies have not yet been 
conducted.
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Epigenomics

One of the main ways in which gene transcription is regulated is through epigenetic 
changes such as DNA methylation and histone modification; for instance, DNA meth-
ylation at a gene promoter region generally acts to repress gene transcription [13]. When 
studied on an omics scale, this approach is known as epigenomics. In the context of sep-
sis, recent studies are beginning to unravel how epigenetics plays a role in sepsis patho-
genesis. Binnie and colleagues performed an epigenome-wide DNA methylation analysis 
of whole blood samples from 68 septic and 66 non-septic critically ill adults [14]. They 
discovered 668 differentially methylated regions (DMRs) of which the majority (61%) 
were hypermethylated. Next, enrichment analysis of the DMR-containing genes was 
performed, showing that pathways related to an anti-inflammatory and T-helper 1 type 
immune response were enriched with hypermethylated genes. Conversely, pathways 
including negative regulation of IFNγ production were enriched with hypomethylated 
genes. Finally, the authors found certain sets of methylated genes that were correlated 
to the need for vasopressors and disease severity, suggesting a link to clinical features. 
Another study measured global DNA methylation specifically of monocytes in patients 
with sepsis [15]. Sepsis was associated with changes in methylation of genes relevant 
to the function of monocytes, including those involved in inflammation mediated by 
chemokine–cytokine signaling (hypermethylated) and MHC class II protein complex 
(hypomethylated), supporting the role that DNA methylation plays in regulating gene 
expression in sepsis.

A further mechanism known to regulate the transcriptome, although not categorized 
under epigenomics, is through non-coding RNAs such as long non-coding RNAs and 
micro RNAs. This has recently been studied in sepsis using a next-generation micro 
array, performed on leukocytes. It was found that long non-coding RNA and, to a lesser 
extent, small non-coding RNA were significantly altered in sepsis relative to health [16]. 
Future mechanistic studies on sepsis may aim to integrate epigenomics and transcrip-
tomics to determine how much of the variance in transcriptomics is influenced by meth-
ylation, histone modification and non-coding transcripts.

Transcriptomics

A wide variety of RNA molecules, transcribed from the genome, exert diverse functions 
in the production of proteins and the regulation of gene expression. Most transcrip-
tomic studies in sepsis examined messenger RNA (mRNA)—and thus the expression 
of genes that may lead to the production of the corresponding protein—but this focus 
has expanded to regulatory non-coding forms such as microRNA and long non-cod-
ing RNA, as we noted in the previous paragraph. When measuring the transcriptome, 
microarrays allow for the detection of a large number of predefined genes, whereas next-
generation RNA-sequencing detects all RNA present, including novel and alternatively 
spliced transcripts [17].

The vast amounts of data generated through transcriptomics have facilitated the dis-
covery of novel diagnostics for sepsis. While sequencing all RNA in a biological sample 
is costly and time consuming, combinations of genes with validated diagnostic value can 
be rapidly and relatively inexpensively assessed via partially automated qPCR methods. 
For instance, several gene sets derived from whole blood leukocytes have been validated 
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in multiple cohorts to distinguish systemic inflammation due to infection from ‘sterile’ 
systemic inflammation without an overt infectious cause [18]. Such gene sets include the 
Sepsis MetaScore [19], SeptiCyte™ LAB [20], and the FAIM3:PLAC8 ratio [21]. These 
diagnostics, perhaps in sequence with other tests to improve their overall predictive 
value, could theoretically aid in reducing unnecessary antibiotic exposure in the ICU—
to avoid harmful side effects and antimicrobial resistance—or, at the very least, prompt 
physicians to consider alternative non-infectious diagnoses that may require different 
treatments.

Transcriptomic data has also been used to cluster patients with sepsis into subgroups 
that may not immediately be apparent at the bedside, but do share clinically relevant 
pathophysiological characteristics—so-called endotypes. If these endotypes are robust 
and rapidly identifiable, they could allow for a precision medicine approach to sepsis: 
treatment decisions could be based on specific underlying biological processes rather 
than the relatively aspecific clinical definition of ‘suspected infection with organ failure’ 
[18]. In recent years, several endotypes have been characterized and validated: endo-
types A and B in pediatric sepsis [22]; sepsis response signature (SRS) 1 and 2 [23]; Mars 
1 through 4 [24]; and, using all publicly available transcriptome data at the time (includ-
ing those used in the preceding three studies), the inflammopathic, adaptive and coag-
ulopathic endotypes [25]. At a molecular and pathophysiological level, some of these 
endotypes appear to capture overlapping phenomena. For instance, the SRS2, Mars3 
and adaptive endotypes largely describe the same group of patients with an upregulation 
in adaptive immunity genes (associated with lower mortality) [24, 25]. These endotypes 
could theoretically be used predictive enrichment (identifying patients with certain 
pathophysiological characteristics more likely to respond to certain treatments), but 
this will first require answering the many open questions on topics such as stability of 
endotypes over time, generalizability, and implementation [18, 26]. Studies that translate 
these endotypes into clinical practice remain scarce, but differential responses to treat-
ment have been described: in a post-hoc analysis of the VANISH trial, hydrocortisone 
administration was associated with higher mortality in the non-immunosuppressed 
SRS2 endotype [27], whereas in pediatric sepsis endotype B, characterized by higher glu-
cocorticoid receptor signaling, corticosteroid treatment was linked to favorable clinical 
outcomes [28].

Assessing gene expression in whole blood leukocytes, or specific cell fractions, can be 
used to study the septic host response in an untargeted manner. For instance, Claush-
uis et al. stratified critically ill patients with sepsis based on platelet counts and found 
that—even when matched for severity of disease and other confounding factors—the 
most severely thrombocytopenic patients exhibited a more disturbed host response 
(e.g., overexpression of genes related to the complement system) when compared with 
patients with normal platelet counts [29]. Using publicly available data, Zador et al. dem-
onstrated substantial overlap in the gene expression pathways involved in the response 
to pulmonary sepsis, abdominal sepsis, and trauma [30]. By utilizing CIBERSORT, a 
method to derive leukocyte population fractions from bulk RNA data [31], they found 
higher mortality rates in patient groups that were characterized by lower abundance of 
circulating neutrophils.
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An emerging and promising technique in the field of sepsis transcriptomics is single-
cell RNA-sequencing, in which cells are separated into individual droplets and com-
bined with unique RNA-barcoded beads that allow for subsequent identification of the 
transcriptome of each cell [32]. These techniques generate vast amounts of data within 
each subject, but the high financial cost still preclude the larger sample sizes obtained 
in bulk transcriptomic studies. This limits both power for between-subject comparisons 
and the generalizability of results. An advantage of single-cell RNA-sequencing is that it 
enables researchers to identify novel cell types and states that are lost in bulk data: Reyes 
et al.recently performed single-cell RNA-sequencing in peripheral blood mononuclear 
cells of a cohort of 29 septic patients (primarily with urinary tract infections) and found 
a novel monocyte state (named “MS1”) that was virtually absent in healthy controls and 
patients with urinary tract infection but without sepsis [33]. Importantly, the authors 
managed to assess the robustness of this MS1 state in several ways: they validated the 
MS1 transcriptomic signature in external bulk RNA-seq data, they generated cells with 
MS1-like characteristics by stimulating bone marrow precursor cells with lipopolysac-
charide (LPS), and they defined surface markers that allowed cell sorting of MS1 cells 
[33]. Another study that investigated seven patients with sepsis and four healthy con-
trols confirmed previously reported alterations in sepsis at the single cell level, such as 
downregulated genes related to HLA-DR and alterations in energy metabolism pathways 
in the monocyte clusters [34]. A third study that included seven septic patients—three 
of whom also developed acute respiratory distress syndrome (ARDS)—reported a clear 
upregulation of genes related to type I interferon signaling in ARDS, potentially driven 
by a virtual absence of SOCS3 (a negative regulator of cytokine signaling) in all mono-
cyte clusters in these patients [35].

 Three main applications of high‑dimensional data in sepsis

1.	 Study the host response to elucidate key mechanisms of sepsis pathophysiology, 
potentially guiding future therapies.

2.	 Develop diagnostics to improve bed-side testing and personalized medical treat-
ment.

3.	 Uncover clinically relevant clusters within the heterogeneous group of sepsis 
patients.

Proteomics

Proteomics is often seen as the next step down the -omics hierarchy, following genomics 
and transcriptomics. It entails the analysis of proteins that are produced or modified by 
an organism, covering composition, activity and structure. Measurements are often per-
formed through gel electrophoresis, antibody immunoassays or liquid chromatography 
followed by mass spectrometry [36].

Proteins consist of amino acids, which have been assembled in ribosomes based on the 
translation of a mature mRNA blueprint. This mature mRNA is derived from precursor 
RNA—the primary transcription of DNA—which has been modified by for instance 3′ 
polyadenylation, 5′ capping and intron splicing to produce a functional mRNA molecule. 
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After ribosomal translation, proteins are often altered by the addition or removal of spe-
cific molecules (such as phosphate or methyl groups), which can markedly alter protein 
function. Taken together, these post-transcriptional and post-translational modifications 
render the proteome highly dynamic and obscure its direct relation to the genome and 
transcriptome.

As the final product of this network of transcription, translation and modification, 
proteins can provide valuable mechanistic insight and/or serve as biomarkers. Sev-
eral research groups have performed untargeted proteomics analyses in sepsis (the 
use of single targeted proteins as biomarkers has been reviewed elsewhere [37, 38]). 
For instance, De Coux et al. compared survivors and non-survivors of sepsis in a small 
cohort of patients presenting to the emergency room, and found more than 90 plasma 
proteins that were exclusively present in one of the two groups [39]. Using the Kyoto 
Encyclopedia of Genes and Genomes database the authors determined specifically 
upregulated pathways in surviving patients, such as the extrinsic coagulation and com-
plement cascades. Another investigation reported age-related proteomic changes in a 
population of 19 elderly septic patients [40]. In a more extensive, multi-step effort, Lang-
ley et al. sought to characterize both the plasma metabolome and proteome in plasma of 
patients with sepsis upon their presentation at the emergency department and 24 h later 
[41]. The study design entailed three sets of patients with sepsis or systemic inflamma-
tory response syndrome (SIRS): a discovery cohort of 150 patients, a validation set of 52 
patients and a second validation set of 90 patients. Through cross-correlation and hier-
archical clustering of the proteome and metabolome the authors recapitulated known 
metabolic reactions, unveiling analytes and pathways—such as a profound defect in fatty 
acid beta-oxidation—that differentiated between survivors and non-survivors. Interest-
ingly, in this study the plasma metabolome and proteome could not differentiate sepsis 
from severe sepsis nor septic shock in survivors. Alterations in lipid metabolism path-
ways were also reported in another study, comparing plasma of 23 healthy controls, 20 
sepsis survivors and 13 sepsis non-survivors at hospital admission and 7 days later [42]. 
Downregulation of apolipoproteins and alterations in cholesterol metabolism delineated 
sepsis patients from healthy controls, while dysregulation of the actin cytoskeleton path-
way was more pronounced in sepsis non-survivors than in survivors.

Although these investigations highlight the potential of proteomic data, it also under-
lines the limitation of plasma measurements. It is challenging to draw mechanistic con-
clusions from diverging signatures in specimens such as plasma or urine [43], as the 
origin of the analytes often remains uncertain. This issue can be sidestepped by focusing 
on a more specific sample, such as platelets or neutrophils [44, 45], or resolved by vali-
dating findings in vitro.

Lipidomics and metabolomics

Lipids are a prerequisite for the existence of cells. Lipids have both important structural 
and bioactive functions. By forming a lipid bilayer they are the essential building blocks 
of all membranes, providing structure and compartmentalization. As bioactive mol-
ecules, lipids play a key role in many cellular processes such as cellular energy metab-
olism, transport of mediators and cell–cell signaling [46]. In this context, the study of 
metabolites (metabolomics) is closely related to lipidomics as it is often measured with 
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the same methods, mainly through chromatographic separation followed by mass spec-
trometry identification.

Tens of thousands different lipid species exist in the human body, which can be 
divided into eight main classes and many more subclasses based on chemical structure 
and properties [47]. Due to the variability of lipids, the range of biological concentra-
tions and limitations of previous detection tools, our grasp of the lipidome is trailing 
that of the genome and transcriptome.

In sepsis, most studies investigating lipids thus far have focused on the potential role 
of specific lipids as a plasma biomarker. For instance, high-density lipoprotein choles-
terol (HDL-C) levels decrease during sepsis, which has been associated with worse clini-
cal outcomes [48]. HDL-C can bind and isolate potentially harmful lipids derived from 
pathogens, and has, therefore, been hypothesized to play a protective role in bacterial 
infections [49]. A more untargeted approach has been employed by Mecatti et al., who 
measured a part of the plasma lipidome in 21 patients with SIRS and 21 patients with 
sepsis [50]. Multiple lipid species, such as glycerosphingolipids and prostaglandins, were 
more abundant in the sepsis group, while l-octanoylcarnitine was found to be most rel-
evant for prognostic classification, discriminating between survivors and non-survivors. 
Another study associated lipid signatures with therapy responsiveness 21 patients with 
septic shock, showing that lysophosphatidylcholine levels only increased in treatment 
responsive patients during the disease course [51].

‘Eicosanoids’ are arguably the most extensively studied lipids in the context of infec-
tions. Roughly divided into pro-inflammatory mediators and pro-resolving mediators, 
these bioactive lipids are enzymatically produced from poly-unsaturated fatty acids in 
leukocytes [52]. Non-steroidal anti-inflammatory drugs have been used to inhibit pro-
inflammatory eicosanoids (such as prostaglandin) for decades. However, it has only 
recently been recognized that eicosanoids can also actively mediate the resolution of 
inflammation. In a murine sepsis model, it has been shown that intervention with pro-
resolving mediators such as resolvins and protectins increased phagocytic uptake and 
bacterial clearance, lowering antibiotic requirements [53]. Eicosanoids may also serve as 
biomarkers: a study by Dalli et  al. reported that levels of lipid mediators in plasma of 
critically ill patients with sepsis correlated with mortality and the development of ARDS 
[54].

Lipids and metabolites have a wide array of cellular functions. As such, measuring 
the metabolome and lipidome of isolated immune cells during infection could be highly 
informative of alterations in key cellular processes. For example, an increasing number of 
studies show that changes in energy metabolism pathways, also called metabolic repro-
gramming, can alter immune cell functionality [55]. To illustrate, it was recently shown 
that macrophage phenotypes—ranging from pro-inflammatory to anti-inflammatory—
can be shaped by controlling fatty acid oxidation [56]. Khalic et al. showed in metabolic 
signatures in serum of 33 critically ill patients that both an increase and a decrease in 
mitochondrial fatty acid beta-oxidation products was related to mortality, hypothesizing 
that a “corridor of safety” might exist, consisting of a certain range in which cellular fatty 
acid metabolism must be maintained [57].

Understanding the role of lipids and metabolites may not only provide valuable 
insights in the inner workings and structural changes of immune cells, but may also 
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elucidate host–pathogen interactions [58, 59], and pave the way for future interventions. 
Collectively, current studies indicate that lipidome and metabolome alterations may play 
an important role in the host response during sepsis, although the field remains in an 
explorative phase.

Microbiomics

The human microbiome comprises trillions of microbes that colonize the human body, 
primarily bacteria in the gut [60]. The development of culture-independent technolo-
gies—such as 16S rRNA and shotgun metagenomic sequencing—has facilitated the 
investigation of these microbial communities and their role in health and disease. 
Numerous experimental and epidemiological studies have demonstrated an important, 
yet incompletely understood role of the gut microbiome in sepsis [61]. Hospitalization 
for reasons known to cause a disrupted microbiome, such as infections and antibiotic 
treatment, increases the risk for readmission to the hospital with sepsis [62]. Several 
prospective cohort studies have examined microbiome changes in critically ill patients 
and showed that these patients had a reduction of obligate anaerobes and overgrowth of 
potentially pathogenic bacteria (such as Staphylococcus and Pseudomonas spp.) [63–66]. 
It should be noted that these findings may be confounded by the antibiotic treatment 
patients receive, as well as by the other interventions such as enteral/parenteral feeding 
and the use of gastric-acid inhibition and sedatives [61].

Disruptions of the microbiome may not be limited to the gut, as it has been shown 
that the lung microbiome is altered during critical illness and can become enriched with 
gut-associated bacteria [67]. In a murine model of sepsis, lung bacteria were most likely 
to originate from the lower gastrointestinal tract, while in humans with ARDS the level 
of gut-specific bacteria in broncho-alveolar fluid was abundant and associated to dis-
ease severity [68]. Furthermore, a recent proof-of-concept study showed an association 
between decreased lung microbiome diversity and increased mortality in patients with 
extrapulmonary sepsis [69].

The methods by which the microbiome is measured continue to evolve. The amplifi-
cation and sequencing of marker genes is a commonly used and cost-effective method 
to obtain an overview of one type microbial community (e.g., 16S rRNA for bacteria), 
but seems insufficient to meet the challenges of this field. For a more complete picture, 
researchers could take into account all communities of microorganisms that may be pre-
sent in a certain sample and integrate the bacteriome, virome, fungiome and protozome 
[70]. Metagenomic sequencing measures all genes in a microbiome sample—including 
viral and eukaryotic DNA—and thereby enables higher taxonomic resolution and infer-
ence of functional capacity [71]. Current metagenomic practices use short-read sequenc-
ing to simultaneously sequence the mixture of microbial genomes, but the results are 
sub-optimal due to the fact that short-reads can align to the genomes of multiple micro-
bial genomes [72]. Long-read sequencing has been used to mitigate this problem, and 
could facilitate a more robust measurement of all communities.

Whereas the composition of the microbiome can be determined in great detail, cur-
rent interventions (such as probiotics or selective decontamination) are often aspecific 
and utilize a one-size-fits-all approach. Advancing our understanding of the microbiome 
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in health and the dysbiosis associated with sepsis may aid in the development of person-
alized microbiome-based therapies [73].

Integrating multi‑omics data

In the words of the essayist and poet Jorge Luis Borges: “Everything touches everything”. 
All molecular layers discussed in the previous chapters are interdependent and influence 
each other continuously (Fig. 1). Integration of these layers of molecules can yield a more 
holistic view of biological processes and uncover novel connections between layers. 
Advances in bioinformatics methods have enabled the integrated and concurrent analy-
sis of two or more -omics layers (multi-omics), but only few studies in the field of sepsis 
have attempted this (the various computational tools available for multi-omics analysis 
are reviewed elsewhere [74, 75]). The first study to integrate genomics and transcrip-
tomics in sepsis was performed by Davenport and colleagues [23], who proposed that 
“individual heterogeneity in the transcriptomic response to sepsis might be modulated 
by genetic variation”. They studied this using expression quantitative trait loci (eQTL)—
these are genomic loci (SNPs) for which the genotype is significantly associated with 
gene expression. In their sepsis cohort the genes at cis-acting eQTLs (where the SNP 
and the gene locally coincide on the chromosome) were found to be enriched in path-
ways relevant to sepsis such as viral respiratory infection and cellular immune response. 
The cis-eQTL genes included TLR4 and TNF establishing that in sepsis patients, leuko-
cyte gene expression of key immune regulators is indeed influenced by their genetics.

Multi-omics may also improve diagnostics by increasing the dimensionality of the 
data: Wong et  al. developed a classifier combining transcriptomic markers and serum 
proteins that discriminated between survivors and non-survivors in children with septic 
shock, and outperformed an earlier classifier based on serum proteins alone [76]. Comb-
ing genomics with measurements of metabolites and cytokines revealed the methionine 
salvage pathway as regulator of sepsis that can predict prognosis in patients [77].]. As 
mentioned earlier, Langley et al., could differentiate survivors and not-survivors in sepsis 
using an integrated proteomics and metabolomics approach [41].

Fig. 1  Schematic overview of different molecular layers measured by -omics technologies. Integrating these 
layers through multi-omics analysis can yield a more holistic view of biological processes and uncover novel 
connections between layers



Page 11 of 15Schuurman et al. ICMx            (2021) 9:27 	

Multi-omics methods are still in their infancy and beset by several challenges. First, 
many multi-omics tools require normalization of the data, noise filtering and other 
preprocessing steps. Without standardized approaches for this, it becomes difficult to 
compare studies and generalize results. Second, each ‘omic’ operates on a different time-
scale, making it challenging for single time point measurements to detect causal effects 
between layers. Third, there is no consensus at this time on how to choose the right 
analysis technique for a particular combination of -omics, perhaps with the exception 
of eQTLs. Subramanian and colleagues suggested to classify tools by technique (such 
as Bayesian, network-based methods or factorization) and by the biological question of 
interest they are able to address (such as defining subgroups, discovery of biomarkers or 
obtaining insights into pathophysiology) [75]. Such consensus-based recommendations 
may be helpful for researchers to choose the analytical method that best fits their data 
and research question.

Discussion
Reductionism—the belief that every single process in nature can be broken down in and 
explained by its constituent parts—is invaluable in grasping complexity. We know that 
cells are not two-dimensional, that pathways are not linked by arrows, and that many 
reactions only occur after reaching some critical (in)balance, often with non-linear con-
sequences. Still, testing and visualizing processes this way help us to dissect very com-
plex problems such as sepsis. All science is reductionist to some extent, but -omics 
technologies allow for a more all-encompassing representation of the processes under 
investigation. These types of studies are open to findings outside the scope of our current 
understanding. Nevertheless, after all high-dimensional data integration and analyses, 
we still rely on results derived from traditional experimental research for the interpreta-
tion and validation of findings.

Despite the increasingly sophisticated analysis methods, measuring one substrate at a 
single moment is unlikely to capture a biological process in its entirety. Perturbations in 
sepsis are not necessarily confined to specific compartments, such as the broncho-alve-
olar space or peripheral blood, but more likely part of system-wide and interconnected 
changes. We know that processes change over time and as sepsis progresses, which leads 
to temporal heterogeneity. Thus, studies would ideally include longitudinal measure-
ments of multiple biological compartments. Importantly, even the most sophisticated 
measurements and bioinformatics analyses cannot compensate for poorly collected 
samples or biased study designs.

Certain -omics fields, like transcriptomics, have adopted the mandatory practice of shar-
ing raw data. This has already led to prolific re-use of data generated in one or multiple 
cohorts, and will allow for the meta-analysis of multiple datasets. Meta-analyses can provide 
increased power and efficiency for discovering and consolidating data patterns with potential 
clinical relevance, such as different sepsis endotypes. While more data reduces random error, 
it does not prevent bias, and the risk of bias is especially high when one is unaware of the 
intricacies of the datasets and the confounders therein. Meta-analyses of high-dimensional 
data would be wise to adopt the methodological rigor employed by traditional meta-analyses 
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in clinical epidemiology, such as those by the Cochrane collaboration, and to collaborate with 
the researchers that published the dataset for individual patient level data.

Conclusions
Tremendous progress has been made in sepsis research, but several overarching chal-
lenges must still be overcome. Multi-omics approaches, combining molecular layers 
and biological compartments, have the potential to improve our understanding of sepsis 
pathophysiology, help develop more rapid diagnostics, and facilitate personalized medi-
cal management.
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