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Abstract 

Background:  Hypovitaminosis C and vitamin C deficiency are common in critically ill 
patients and associated with organ dysfunction. Low vitamin C status often goes unno‑
ticed because determination is challenging. The static oxidation reduction potential 
(sORP) reflects the amount of oxidative stress in the blood and is a potential suitable 
surrogate marker for vitamin C. sORP can be measured rapidly using the RedoxSYS sys‑
tem, a point-of-care device. This study aims to validate a model that estimates plasma 
vitamin C concentration and to determine the diagnostic accuracy of sORP to discrimi‑
nate between decreased and higher plasma vitamin C concentrations.

Methods:  Plasma vitamin C concentrations and sORP were measured in a mixed 
intensive care (IC) population. Our model estimating vitamin C from sORP was vali‑
dated by assessing its accuracy in two datasets. Receiver operating characteristic (ROC) 
curves with areas under the curve (AUC) were constructed to show the diagnostic 
accuracy of sORP to identify and rule out hypovitaminosis C and vitamin C deficiency. 
Different cut-off values are provided.

Results:  Plasma vitamin C concentration and sORP were measured in 117 samples in 
dataset 1 and 43 samples in dataset 2. Bias and precision (SD) were 1.3 ± 10.0 µmol/L 
and 3.9 ± 10.1 µmol/L in dataset 1 and 2, respectively. In patients with low plasma vita‑
min C concentrations, bias and precision were − 2.6 ± 5.1 µmol/L and − 1.1 ± 5.4 µmol 
in dataset 1 (n = 40) and 2 (n = 20), respectively. Optimal sORP cut-off values to differ‑
entiate hypovitaminosis C and vitamin C deficiency from higher plasma concentrations 
were found at 114.6 mV (AUC 0.91) and 124.7 mV (AUC 0.93), respectively.

Conclusion:  sORP accurately estimates low plasma vitamin C concentrations and 
can be used to screen for hypovitaminosis C and vitamin C deficiency in critically ill 
patients. A validated model and multiple sORP cut-off values are presented for sub‑
group analysis in clinical trials or usage in clinical practice.
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Introduction
Vitamin C plasma concentrations are often decreased in critically ill patients [1]. Low 
concentrations are associated with endothelial dysfunction, organ failure and mortal-
ity [2–4]. Intravenous administration of vitamin C may be beneficial [5], but results 
vary among clinical studies [6–18]. Vitamin C administration may especially be ben-
eficial at lower plasma concentrations. Hypovitaminosis C (< 23 µmol/L) and vitamin 
C deficiency (< 11  µmol/L) are commonly used cut-off values to describe low vita-
min C status. However, these cut-off values come from old literature and are arbitrary 
chosen to determine scurvy [19]. Reasonably, a more gradual impact of decreasing 
plasma vitamin C concentrations on clinical outcome is expected. Unfortunately, low 
vitamin C status often goes unnoticed, because determination of the plasma vitamin 
C concentrations is challenging. Blood samples need to be stabilized quickly and the 
laboratory analysis is laborious, expensive and not available for routine care. There-
fore, a novel way to screen patients rapidly for low plasma vitamin C concentrations 
is relevant for both clinicians who consider vitamin C administration and researchers 
who want to perform a stratified trial analysis. A potential suitable marker for this 
purpose is the static oxidation reduction potential (sORP), which reflects the amount 
of oxidative stress in the blood.

In critically ill patients huge amounts of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) are generated [20, 21]. Vitamin C is our primary circulating 
antioxidant [22] and is metabolically consumed if oxidative stress is high. The total 
amount of oxidative stress will therefore have a significant impact on the total amount 
of vitamin C, vice versa.

The RedoxSYS system (Aytu Bioscience, Englewood, CO, USA), a point-of-care 
device, is able to measure the static oxidation reduction potential (sORP) within 
20  min in a sample volume of 30 µL [23–25]. It measures the balance between the 
total amount of oxidants and reductants in the plasma. sORP appeared to be use-
ful for the estimation of plasma vitamin C concentrations in critically ill patients 
and healthy volunteers, as shown in our recently published retrospective study using 
thawed plasma samples [23]. A strong negative relation was found between sORP and 
plasma vitamin C concentration.

The primary aim of this study is to prospectively validate our previous findings in 
fresh samples and to validate a model that can estimate vitamin C status. The second-
ary aim of the study is to determine the diagnostic accuracy of sORP to discriminate 
between low and higher plasma vitamin C concentrations. sORP cut-off values will be 
provided for the conventionally used cut-offs of both hypovitaminosis C, and vitamin 
C deficiency. The repeatability of the sORP measurement and the impact of freezing 
and storage on absolute sORP results were investigated first.

Methods
Study design

This study was performed in a mixed medical/surgical adult intensive care unit 
(ICU) of the Amsterdam University Medical Centers, Location VUmc, Amsterdam, 
the Netherlands. The study was approved by the local Ethics Board (registration 
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NL66863.029.18, decision 2018.502). Written informed consent was obtained from all 
participants or their legal representatives prior to inclusion.

Eligible for inclusion were patients admitted to the ICU with systemic inflammatory 
response syndrome (SIRS), sepsis [26], trauma or after cardiac arrest. These patient cat-
egories are ‘at risk’ for low plasma vitamin C concentrations [1, 3, 23, 27].

Vitamin C measurements

Heparinized blood samples were obtained on the day of admission (day 1) and on day 3 
if the patient was still in the ICU. After centrifugation (10 min, 1800G), the supernatant 
was stabilized with 5.6% meta-phosphoric acid (1:5) and frozen at − 80 °C until vitamin 
C measurement by high-performance liquid chromatography–ultraviolet (HPLC–UV). 
Total vitamin C was measured (the sum of ascorbic acid (AA) and dehydroascorbic acid 
(DHA), an oxidation product of AA). No clinical information was available to the asses-
sors of the vitamin C measurement.

sORP measurements

Samples were collected with heparin. After centrifugation (10 min, 1800G), sORP was 
directly measured in the plasma samples. sORP was measured without knowledge about 
patients’ plasma vitamin C concentration. The total time from obtaining blood until a 
sORP result is less than 20  min. A detailed description of the sORP measurement by 
the RedoxSYS System (Aytu Bioscience, Englewood, CO, USA) has previously been out-
lined [23–25]. To assess the effect of a freeze–thaw cycle and storage on the variability 
of the measurement, sORP was measured again in 30 plasma samples (duplicates) that 
had been stored at − 80 °C for 6 months. Prior to the sORP measurements, a calibration 
verification test was performed and each new lot of sensors was verified with an exter-
nal control solution (Zobell’s solution). sORP was also directly measured in 28 samples 
with acidified heparinized plasma, serum and EDTA–plasma. These samples were all 
obtained at the same time as 28 heparinized blood samples. Results are shown in Addi-
tional file 2: Table S1 to show the differences in absolute sORP values. These results are 
beyond the scope of this paper.

Defining hypovitaminosis C and vitamin C deficiency

Hypovitaminosis C and vitamin C deficiency are defined as a plasma vitamin C con-
centration lower than 23 and 11 µmol/L, respectively, as currently used in daily clinical 
practice [1]. Plasma vitamin C concentrations in healthy volunteers become saturated at 
about 70–80 μmol/L with an intake of around 0.2 g/day [28].

Statistics

All data were analyzed using IBM SPSS Statistics version 26. Normality was tested using 
skewness results, histograms and the Shapiro–Wilk test. Normally distributed variables 
are reported as mean ± standard deviation (SD) and not normally distributed variables 
as median [25th to 75th] percentile. A p-value of < 0.05 was considered to be statistically 
significant.
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Impact of storage

First, the repeatability of the sORP measurement was assessed by calculating the coef-
ficient of variation (CV, %) of 10 random triplicate fresh measurements. Second, the 
variability in sORP results due to freezing and storage was assessed by calculating the 
mean difference in sORP between the 30 fresh and thawed duplicate samples (sORP 
of thawed samples minus the sORP of fresh samples). Bland–Altman plots, one-sam-
ple T-tests and linear regression models were used to visualize and calculate the mean 
bias and proportional bias. Subsequently, a model validation was carried out.

Model validation

The underlying aim of this study is to estimate plasma vitamin C concentration 
from the sORP, as measured directly at the bedside (point of care). In our previ-
ous work [23], a logarithmic function was computed to estimate sORP from plasma 
vitamin C concentration. In this study, we recalculated the best fit of the relation-
ship between plasma vitamin C concentration as dependent variable and sORP as 
independent variable. This exponential function was then used for model validation: 
plasma vitamin concentration = 785.19e−0.030sORP . The model was validated by deter-
mining its accuracy in two separate datasets as described below.

The accuracy of this model, in terms of bias and precision, was assessed in accord-
ance with the ISO 5725 standard [29]. Bias is the systematic error between the esti-
mated plasma vitamin C concentration, based on our model, and the measured 
plasma vitamin C concentration by HPLC (gold standard). Bias was calculated as the 
mean difference between both measurements (measurement of plasma vitamin C by 
HPLC (gold standard) minus estimated plasma vitamin C by sORP measurement). 
Bland–Altman plots and linear regression models were used to visualize and calculate 
the proportional bias. In case of proportional bias, a subgroup analysis on patients 
with low plasma vitamin C concentrations (< 23  µmol/L, as measured with HPLC) 
was carried out. The precision of our model is the random (non-systematic) error of 
individual measurements and is quantified as the standard deviation (SD) of the bias 
and limits of agreement (1.96 SD). Thus, a high accuracy is the result of the combina-
tion between a low bias and high precision. The accuracy of the model was visualized 
in a Bland–Altman plot.

The accuracy was assessed in dataset 1 (training set), in which our exponential 
model was constructed, containing 117 thawed plasma samples from healthy vol-
unteers and critically ill patients [23] and in dataset 2 (validation set), containing 
freshly obtained plasma samples from critically ill patients. In dataset 2, very high 
plasma vitamin C concentrations (> 150  µmol/L) were excluded as our model esti-
mates plasma vitamin C concentration up to approximately 150 µmol/L [23]. In data-
set 1, healthy volunteers and critically ill patients were both included, explaining the 
relatively high plasma concentrations. Dataset 2 only consists of critically ill patients 
whose plasma concentrations are within a clinically relevant range. Three patients 
received vitamin C therapy and were excluded as their plasma vitamin C concentra-
tions were > 150 µmol/L.
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Diagnostic accuracy of sORP

A receiver operating characteristic (ROC) curve and area under the curve (AUC) 
were constructed to show the ability of sORP to correctly identify or rule out the 
actual measured hypovitaminosis C and vitamin C deficiency by HPLC in both data-
sets separately and combined. The sensitivity, specificity, positive and negative pre-
dictive values (PPV and NPV) were calculated for different cut-off points. The cut-off 
points with a 100% sensitivity and with a 100% specificity were identified, as well as 
the optimal cut-off points using Youden’s J Statistic. The 41 healthy volunteers from 
dataset 1 were not included in these analyses, as they were not ‘at risk’ for low plasma 
vitamin C concentrations.

Results
Twenty-five different patients were enrolled for dataset 2. Baseline characteristics of the 
patients included in both datasets are shown in Table 1.

Plasma vitamin C concentration and sORP measurements

In dataset 2, plasma vitamin C concentration was measured in 25 patients at day 1 and 
21 patients at day 3. 3 out of 46 samples were excluded as their plasma vitamin C con-
centrations were > 150 µmol/L due to vitamin C therapy. In the remaining 43 samples, 
sORP was measured directly.

Table 1  Baseline characteristics

APACHE Acute Physiology and Chronic Health Evaluation; BMI body mass index; SIRS systemic inflammatory response 
syndrome; sORP static oxidation–reduction potential; SOFA Sequential Organ Failure Assessment

Data are presented as mean ± standard deviation or as median with (interquartile range)
a Previously published data [23]. The authors gave consent for republishing the baseline characteristics
b SOFA-scores are calculated without the central nervous system score due to its unreliability when patients receive 
sedatives. SOFA-scores were calculated according to the NICE criteria [30]
c Measured in 40 patients
d Measured in 41 patients
e Measured in 21 patients
f Measured in 36 patients
g Measured in 35 patients

Patients Dataset 2 Dataset 1a

Total (n = 25) Total (n = 42)

Age (years) 70 (56–76) 61 (48–76)

Sex, male (%) 15 (60) 27 (64.3)

BMI (kg/m2) 26.3 (23.5–30.6) 25.3 (22.4–27.6)

SIRS/sepsis/trauma (n)
Cardiac arrest (n)

14 (56%)
11 (44%)

26 (61.9%)
16 (38.1%)

Lactate day 1 (mmol/L) 3.7 (2.4–4.9) 2.4 (1.7–4.8)

SOFA day 1b 8 ± 3 7 ± 3

APACHE II 28 (22–30) 28 (22–31)c

APACHE III 104 (71–123) 102 (73–122)

Plasma vitamin C concentration (µmol/L) day 1 28.5 (14.8–44.3) 25.3 (16.0–36.0)

sORP (mV) day 1 114.2 (98.7–131.9) 114.2 (102.2–126.9)d

Plasma vitamin C concentration (µmol/L) day 3 23.0 (12.1–53.6)e 18.7 (13.7–28.8)f

sORP (mV) day 3 121.3 (102.3–135.8)e 119.4 (107.8–135.5)g
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Repeatability of the RedoxSYS system in fresh plasma

In a random subset of 10 samples of dataset 2, sORP was measured three times to assess the 
repeatability of the RedoxSYS System. The coefficient of variation was 4.6% (sORP range 
from 74.0 mV to 148.6 mV).

The impact of storage at − 80 °C

In 30 different samples of dataset 2, sORP was measured directly and after 6 months of 
storage at − 80 °C. When comparing the sORP results after 6 months with the direct sORP 
measurements, an average difference of − 0.3 ± 7.1 mV was found (Fig. 1). There was no sta-
tistically significant difference between the two measurements (p = 0.8). Linear regression 
and visual inspection by Bland–Altman analysis showed that there was no indication of a 
proportional bias (p = 1.0).

Fig. 1  Correlation (left) and Bland–Altman (right) plot. a The X-axis represents the sORP results of direct 
measurements and the Y-axis represents the stored samples (R2 linear = 0.94). b The X-axis represents the 
average sORP of the direct and half year measurements. The Y-axis represents the difference of the two 
measurements. The mean bias (green line) and its confidence limits (limits of agreement) (red lines) are 
shown

Fig. 2  Scatter plot with exponential model in thawed plasma samples (n = 117), dataset 1 (a), and in fresh 
plasma samples (n = 43), dataset 2 (b). Equation: plasma vitamin concentration = 785.19e−0.030sORP  
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Model accuracy

In dataset 2, 43 measurements were included. The exponential model has been plot-
ted in both datasets (Fig. 2). A sORP of 116.3 mV and 140.5 mV correspond with an 
estimated plasma vitamin C concentration of 23 and 11 µmol/L, respectively.

The bias (mean difference) and precision (SD) were 1.3 ± 10.0 µmol/L (95% CI − 0.6 
to 3.1 µmol/L) and 3.9 ± 10.1 µmol/L (95% CI 0.7 to 7.0 µmol/L) in dataset 1 and 2, 
respectively. In both datasets a proportional bias was found (dataset 1: p = 0.03, and 
dataset 2: p = 0.02); see Fig. 3. A subgroup analysis on patients with low plasma vita-
min C concentrations (< 23 µmol/L) showed a bias and precision of − 2.6 ± 5.1 µmol/L 
(95% CI − 4.2 to − 1.0 µmol/L) and − 1.1 ± 5.4 µmol/L (95% CI − 3.6 to 1.4 µmol/L) in 

Fig. 3  Bland–Altman plots of dataset 1 (a) and dataset 2 (b). The X-axes represent the average of the 
estimated plasma vitamin C concentration by our model and the measured plasma vitamin C concentration 
with HPLC (gold standard). The Y-axes represent the difference between the two measurements. The mean 
bias and its confidence limits (limits of agreement, LoA) are shown for the whole group (gray striped lines) 
and subgroup (< 23 µmol/L, green filled dots) analysis (mean bias = green dotted striped line and LoA = red 
dotted striped lines)

Fig. 4  ROC-curves for hypovitaminosis C (a) and vitamin C deficiency (b) in the combined datasets
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dataset 1 (n = 40) and 2 (n = 20), respectively. The accuracy of our model in the whole 
groups and subgroups is shown in Fig. 3.

Diagnostic accuracy of sORP: cut‑off value determination and interpretation

The ROC-curves and different sORP cut-off values for hypovitaminosis C and vitamin C 
deficiency are shown in Fig. 4 and Table 2 for both datasets combined. All patients with 
a sORP lower than 103.0 mV and 119.6 mV had plasma vitamin C concentrations > 23 
and > 11 µmol/L, respectively. In addition, all patients with a sORP higher than 141.1 mV 
and 146.9 mV had hypovitaminosis C and vitamin C deficiency, respectively. The opti-
mal cut-off point for hypovitaminosis C and vitamin C deficiency was found at a sORP 
value of 114.6 mV and 124.7 mV, respectively.

The ROC-curves and the sORP cut-off values for the separate datasets are presented in 
Additional file 1: Fig. S1 and Additional file 3: Table S2.

Discussion
This present study demonstrates that the static oxidation–reduction potential (sORP), 
as rapidly measured with a point-of-care device, can be used to accurately estimate low 
plasma vitamin C concentrations in both thawed and fresh plasma samples. Further-
more, this study illustrates that sORP can be used to screen for hypovitaminosis C and 
vitamin C deficiency in critically ill patients, and presents sORP cut-off values for both.

This is the first study that determined the applicability of the Redox SYS system to 
estimate patients’ plasma vitamin C concentration in freshly obtained blood samples. 
In both datasets, the results show that our model estimated patients’ plasma vitamin C 
concentration with an acceptable bias. However, the estimation was not equally precise 
for different plasma concentrations. The precision was higher at lower plasma vitamin C 
concentration. Based on the bias and precision in both datasets, we consider our model 

Table 2  sORP cut-off values for hypovitaminosis C and vitamin C deficiency

AUC​ area under the curve, CI confidence interval, NPV negative predictive value, PPV positive predictive value
a Optimal cut-off value, as chosen using Youden’s J Statistic

Cut-off 
value, 
mV

Sensitivity, 
% (95% CI)

Specificity, 
% (95% CI)

PPV, %
(95% CI)

NPV, %
(95% CI)

AUC​
(95% CI)

p-value

Both fresh and thawed samples (datasets combined)

 Hypovitaminosis C 
(prevalence: 60/122)

103.0 100 (94–100) 44 (31–57) 63 (53–73) 100 
(87–100)

0.91 
(0.86–
0.96)

 < 0.001

114.6a 90 (80–96) 77 (65–87) 79 (68–88) 89 (77–96)

141.1 23 (13–36) 100 (94–100) 100 
(77–100)

57 (48–67)

 Vitamin C deficiency 
(prevalence: 18/122)

119.6 100 (82–100) 70 (60–79) 37 (23–52) 100 
(95–100)

0.93 
(0.88–
0.98)

 < 0.001

124.7a 94 (73–100) 79 (70–86) 44 (28–60) 99 
(94–100)

146.9 33 (13–59) 100 (97–100) 100 
(54–100)

90 (83–95)
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to be accurate for estimating decreased plasma vitamin C concentrations. To provide 
health care professionals with additional guidance while estimating the vitamin C sta-
tus of their patients, multiple sORP cut-off values are presented. Our findings suggest 
that sORP has a very good capability to differentiate hypovitaminosis C and vitamin C 
deficiency from higher plasma concentrations in critically ill patients. It is important to 
emphasize the distinction between our validated model and the sORP cut-off values. 
The model estimates a plasma vitamin C concentration based on a sORP result, whereas 
the provided test characteristics in Table 2 are based on the actual vitamin C status of 
the tested study population (diagnostic accuracy of sORP). When a sORP of 114 mV is 
measured in a new patient, the estimated vitamin C is 25.7 µmol/L. However, the actual 
vitamin C status may be slightly different. Table 2 shows that at this sORP result around 
10% of the tested study population had a plasma vitamin C concentration < 23 µmol/L 
(NPV around 89%).

Previous clinical studies showed that sORP is related to outcome and can be used to 
monitor the amount of oxidative stress in cardiac surgical patients [31] and patients with 
heart failure, sepsis and trauma [20, 25, 32–37]. In a previous study, we demonstrated 
that sORP can be used as a rapid and cheap surrogate marker to monitor changing 
plasma vitamin C concentrations due to disease and vitamin C supplementation in criti-
cally ill patients [23]. In vitro evidence already described a change (decrease) of sORP 
after adding ascorbic acid [24, 25, 38, 39].

In our retrospective cohort study, sORP was measured in thawed plasma samples, 
which were stored for 5 years. Therefore, any impact of a freeze–thaw cycle, storage and 
measurement error on sORP results could not be excluded. In this present study, no dif-
ference in sORP results was found after 6 months storage at − 80 °C, compared to direct 
measurements. Furthermore, our model had a comparable accuracy in both thawed and 
fresh samples. Both these findings show that sORP measurements are stable during fro-
zen storage of plasma samples. This is in line with previous literature [24].

Strengths

First, our study provides a validated model that estimates plasma vitamin C concentra-
tion which can be used to monitor patients’ vitamin C status. Second, multiple sORP 
cut-off values, in fresh and thawed samples, are provided. Besides an optimal cut-off 
point based on Youden’s index, a sORP cut-off value with a sensitivity of 100% and one 
with a specificity of 100% are presented. In this way, the presence of low plasma vitamin 
C concentrations can be made unlikely on the one hand (NPV of 100%) and the presence 
of hypovitaminosis C and vitamin C deficiency more likely on the other hand (PPV of 
100%).

Limitations

First, our model that estimates plasma vitamin C concentration up to approximately 
150 µmol/L appeared to be more accurate for lower plasma vitamin C concentrations. 
With an average precision of ±5 µmol/L for estimations < 23 µmol/L, it will still be dif-
ficult to precisely determine very low plasma concentrations. However, a very precise 
estimation in this very low range is not needed in clinical practice, as the primary inter-
est is to differentiate low from high concentrations with satisfactory validity. In addition, 
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the lower precision (SD of 10 µmol/L) in the high vitamin C range is clinically irrelevant. 
Second, it is important to note that our model is designed to predict total vitamin C (the 
sum of ascorbic acid (AA) and dehydroascorbic acid (DHA), an oxidation product of 
AA). Some laboratories do not measure total AA but only AA. As a consequence, their 
reported plasma vitamin C concentrations are slightly lower. In our data (n = 46), the 
amount of AA was, on average, 90.8% of the total AA. Third, due to the different sample 
sizes of the datasets, the diagnostic accuracy of sORP has to be interpreted with a rela-
tive uncertainty, dependent on the sample size. Therefore, 95% confidence intervals are 
provided to give more insight in the precision whereby the sensitivity, specificity, PPV 
and NPV are estimated. Due to the lower sample size of dataset 2, the imprecision is 
larger compared to dataset 1 (Additional file 3: Table S2).

Clinical implications

The sORP, as measured by the RedoxSYS system, can now be considered in daily clini-
cal practice for estimation and monitoring of patients’ plasma vitamin C concentration, 
especially in the low range (< 23 µmol/L). Furthermore, the multiple sORP cut-off values 
enable researchers to perform subgroup analyses in order to identify subsets of patients 
who might or might not benefit from vitamin C therapy or give support to clinicians 
who already consider vitamin C therapy. In this regard, the prevalence of the vitamin C 
status is relevant. In our tested study population, the prevalence of hypovitaminosis C is 
49% and vitamin C deficiency 15%. In case of low disease prevalence, the positive predic-
tive value (PPV) of a test will be low, even when the test has a high specificity. As a con-
sequence, sORP is not very suitable to identify vitamin C deficiency with a prevalence 
of 15%. However, it is suitable for ruling out vitamin C deficiency at this low prevalence 
because of the high sensitivity and, consequently, the high negative predictive value 
(NPV). When the prevalence of a disease becomes higher, the PPV increases and the 
test becomes more suitable to identify the disease, e.g., hypovitaminosis C in our study. 
Measuring sORP only at patients ‘at risk’ for low plasma vitamin C concentrations (e.g., 
septic shock) will increase the prevalence, and thus affect the way sORP results can be 
used.

Due to the instability of vitamin C, rapid oxidation of vitamin C is inevitable. There-
fore, it essential to process blood samples quickly in order to get reliable sORP results. 
In this present study, we were able to measure sORP and store duplicates within 15 min 
after drawing blood. Both the basic sample processing and the short waiting time until a 
sORP result are in contrast to the laborious stabilization of the samples and costly HPLC 
method, as currently used for plasma vitamin C determination. Finally, all our measure-
ments were performed in heparin plasma samples. When using other collecting tubes, 
the sORP results might differ from heparin (see Additional file 2: Table S1).

Conclusion
Our present study shows that the RedoxSYS analyzer can now be used as a rapid screen-
ing tool that gives health care professionals an indication of the plasma vitamin C con-
centration of their patients within 20 min, by measuring the static oxidation reduction 
potential (sORP). A validated model that accurately estimates low plasma vitamin C 
concentration has been developed for daily usage. In addition, sORP cut-off values of 
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114.6 mV and 124.7 mV provide a very good capability to differentiate hypovitaminosis 
C and vitamin C deficiency from higher plasma vitamin C concentrations, respectively.
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