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Abstract 

Background:  Plasma hyaluronan concentrations are increased during sepsis but 
underlying mechanisms leading to high plasma hyaluronan concentration are poorly 
understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma 
hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and 
experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial 
glycocalyx shedding enzyme, sheddase.

Methods:  Plasma hyaluronan, effective HYAL activity and HYAL inhibition were meas-
ured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and 
day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized 
and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, 
open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 
1 × 108 CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 × 108 CFU/h of 6 h fol-
lowed by 1 × 109 CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion 
(n = 6).

Results:  In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan 
increases with concomitant decrease in effective plasma HYAL activity and increase 
of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic 
shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock 
and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibi-
tion was only increased in septic shock.

Conclusion:  Elevated plasma hyaluronan levels coincided with a concomitant 
decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL 
inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective 
plasma HYAL activity was decreased which was not associated with increased plasma 
hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that 
plasma HYAL does not act as sheddase in sepsis or pancreatitis.
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Introduction
Sepsis is a life-threatening syndrome with high incidence, morbidity and mortality [1]. 
The pathophysiology is complex and still largely unknown making sepsis a challenge for 
clinicians and researchers alike. Current therapeutic options are limited and treatment 
is mainly based on early detection, broad-spectrum antibiotics, fluid resuscitation, vaso-
pressors and organ support [2].

Plasma concentrations of hyaluronan are up to twenty times higher in septic patients 
compared with healthy individuals [3] and correlate with organ dysfunction [4] and 
mortality [5, 6]. The exact mechanisms leading to or any potential consequences of high 
plasma hyaluronan are poorly understood. Hyaluronan is a long non-sulfated polysac-
charide composed of repeated disaccharide units of glucuronic acid and N-acetyl-
glucosamine with a molecular weight that extends up to several million Daltons. The 
functional effects of hyaluronan are size dependent; high molecular weight hyaluronan 
(HMW-HA > 500  kDa) is anti-inflammatory, whereas fragmented hyaluronan is pro-
inflammatory and pro-angiogenic [7, 8]. HMW-HA is very hygroscopic and one gram 
can bind up to 6 l of water [9]. An average human body contains 15 g of hyaluronan, 
which is unevenly distributed and mostly found in the skin (56%), skeleton and connec-
tive tissues (27%). Up to a third of the total hyaluronan content is turned-over each day, 
which means that small changes in either the production, transport or degradation can 
have major impact in tissue fluid balance and edema formation [10].

The metabolism of hyaluronan in humans is mediated through synthetic enzymes 
(HAS1–3), catabolic hyaluronidases (HYAL) and endogenous HYAL inhibitors [11–13]. 
Hyaluronan is synthesized at the plasma membrane and exported into the extracellu-
lar matrix. Hyaluronan is degraded in tissue by HYAL and reactive oxygen species or 
transported via the lymphatic system and degraded by HYAL in lymph nodes. Excess 
of hyaluronan enters the circulation and is removed mainly by the liver through HYAL. 
The HYAL family was first reported as “Spreading Factor” due to the ability to break 
down hyaluronan in the extracellular matrix and, therefore, increasing the invasiveness 
of bacteria and venoms [14, 15]. Little is known about endogenous HYAL inhibitors but 
a predominant HYAL inhibitor is hypothetically a 120 kDa member of the Inter-alpha-
Inhibitor protein (IαIp) [16].

Several hypotheses have been proposed to explain increased plasma hyaluronan con-
centrations in sepsis. First, viral and bacterial infection and inflammatory mediators 
associated with sepsis (TNF-α, interleukin-1 and growth factors) increase hyaluronan 
production [17, 18]. Second, increased lymphatic outflow mobilizes more hyaluronan 
from the interstitium in experimental sepsis [19]. Decreased HYAL activity in either tis-
sue, lymphatics and liver could lead to increased plasma hyaluronan concentration [17]. 
Finally, the endothelial surface layer, or glycocalyx, is damaged during sepsis. The glyco-
calyx is rich in hyaluronan and sepsis-induced shredding of this layer could contribute 
to increased plasma hyaluronan concentration [20]. Injection of HYAL has been shown 
to induce degradation of glycocalyx [21] and circulating HYAL is, therefore, considered 
as a potential endogenous sheddase [22, 23]. Any potential role of HYAL and its’ endog-
enous plasma inhibitors in sepsis is unknown.

The aim of this study was to investigate how plasma HYAL activity and plasma HYAL 
inhibition correlates with hyaluronan during systemic inflammation in a porcine E. coli 
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sepsis model and in clinical human blood samples in sepsis or non-infectious inflamma-
tion in pancreatitis. We specifically hypothesized that plasma HYAL acts as an endothe-
lial glycocalyx shedding enzyme.

Materials and methods
Preclinical experimental study

Anaesthesia and instrumentation

Sixteen healthy Swedish landrace-breed piglets (24.6 ± 1.5  kg) were used in the study. 
The animals had free access to water and food until transportation to the facility. All 
animals were given 50 mg xylazine intramuscularly before transport to minimize stress. 
At arrival, the animals were weighed and tiletamine–zolazepam 6 mg/kg and xylazine 
2.2 mg/kg were given intramuscularly. The ear vein was cannulated and 20 mg of mor-
phine was given. Anaesthesia was maintained using continuous intravenous infusion of 
sodium–pentobarbital 8  mg/kg/h, morphine 0.48  mg/kg/h and rocuronium bromide 
1.5 mg/kg/h. A preload bolus of 20 ml/kg Ringer’s Acetate was given followed by a con-
tinuous infusion of 2 ml/kg/h glucose 25 mg/ml. The total fluid administration, exclud-
ing interventional boluses, was 4.26 ml/kg/h. The airway was secured by tracheostomy 
followed by volume-controlled ventilation with tidal volumes of 6  ml/kg, inspiratory-
to-expiratory ratio of 1:2, fractional inspired oxygen (FiO2) 0.30, positive end-expiratory 
pressure (PEEP) 5 cmH2O, and respiratory rate 25/min.

A urine catheter was placed through a vesicostomy to monitor hourly urine produc-
tion. The right external jugular vein was catheterized with a pulmonary arterial cath-
eter and central venous catheter to monitor cardiac index (CI), mean pulmonary arterial 
pressure (MPAP) and pulmonary capillary wedge pressure (PCWP). The right cervical 
artery was catheterized in to measure blood pressure and to collect blood samples. A 
45–60  min of stabilization was allowed to achieve normoventilation with an arterial 
partial pressure of carbon dioxide (PaCO2) between 35 and 45 mmHg (5.0 and 5.5 kPa) 
by adjusting the respiratory rate. Body temperature was maintained between 38.0 and 
39.5 °C using a warming mattress and blankets.

Induction of sepsis

Sepsis was induced by infusion of live Escherichia coli (E. coli, strain B09–11822) as pre-
viously reported [24]. We chose to use E. coli, because it does not express HYAL [25]. 
The bacterial infusion was replaced every second hour to keep the bacteria in a logarith-
mic growth phase. Sixteen animals were allocated into three groups (unblinded, open 
label): Sepsis-1 (n = 5, infusion of E. coli 1 × 108  CFU/h during 12  h), Sepsis-2 (n = 5, 
infusion of E. coli 1 × 108 CFU/h during 6 h followed by infusion of 10 × 108 CFU/h dur-
ing the remaining 6 h) and Control (n = 6, infusion of equal amount of 0.9% saline). We 
used daily two parallel animals consecutively allocated to each group.

Respiratory and circulatory parameters were followed continuously and recorded 
every hour. Blood samples (EDTA), arterial blood gas and mixed venous blood gas 
(SvO2) were taken hourly. Urine samples and blood samples for bacterial count were col-
lected every 3 h. Total blood loss was estimated to be less than 10% of the circulating 
blood volume (Additional file 1: Fig. S1, time-line of preclinical experimental design).
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Respiratory and circulatory interventions were protocolized according to current 
intensive care practice (excluding antibiotics treatment) and summarized in Additional 
file 2: Table S1. At the experimental endpoint the animals were killed by a direct injec-
tion of potassium chloride in the central venous line while under anaesthesia.

Clinical study

Healthy volunteers (n = 20), patients with septic shock (n = 17) and acute alcoholic pan-
creatitis (n = 7) were enrolled from September 2008 to September 2009 at the Helsinki 
University Central Hospital. All data for patients with acute pancreatitis is previously 
unpublished, while the distribution of molecular weight for hyaluronan in plasma among 
healthy volunteers’ and septic shock patients’ were previously published [3]. Inclusion 
criteria for patients with septic shock were: age ≥ 18 years, ≥ 2 of SIRS criteria fulfilled, 
proven or highly suspected infection consistent with septic shock and norepinephrine 
therapy of at least 0.1 mcg/kg/min in spite of adequate fluid resuscitation to maintain 
systemic arterial pressure (SAP) above 90  mmHg. Inclusion criteria for patients with 
acute pancreatitis were: age ≥ 18  years, ≥ 2 of SIRS criteria fulfilled, pancreatitis con-
firmed by a computer tomography in the absence of biliary stones and a history of exces-
sive consumption of alcoholic beverages (ethanol). Blood samples were taken within 
24 h (day 1) of admission to the ICU and 72 h (day 4) thereafter. Plasma samples were 
collected in K2-EDTA-tubes and centrifuged at 18 °C for 15 min (2500 g) and stored at 
− 80 °C for further analysis.

Quantification of hyaluronan, effective HYAL activity and endogenous HYAL inhibition 

in plasma

We quantified hyaluronan using an ELISA-like assay as described earlier [26]. An assay 
was adapted and optimized to measure effective HYAL activity [27] and the HYAL inhi-
bition assay was based on the HYAL activity protocol with adjustments [16, 28, 29]. In 
detail, please see Additional file 3: text analysis.

Statistics

We chose to use a convenience sample size with minimal reasonable number of animals 
for the experimental study, since no prior data of plasma HYAL activity and plasma 
HYAL inhibition in septic pigs were available. Statistical analyses were preformed using 
IBM® SPSS® statistics version 23 (SPSS, Inc., Chicago, IL, USA). Normality of distribu-
tion of continuous variables was tested by Shapiro–Wilk test and visually assessed using 
histograms. When necessary, the Expectation Maximization method for missing data 
was applied. One-way ANOVA or Kruskal–Wallis test were used to compare the groups. 
Wilcoxon signed-rank test was used to compare groups over time. Two-way repeated 
measures ANOVA was used to compare differences within and between the groups 
over time. If relevant post hoc analysis was performed with the Bonferroni correction or 
Mann Whitney U tests. Spearman’s rank-order test was used for correlation analysis. For 
within-subjects correlation we used the Bland Altman method [30]. The statistical tests 
were used according to the distribution of the data. A value of p < 0.05 was considered 
statistically significant.
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Results
Porcine sepsis: bacterial infusion, respiratory and circulatory variables

The bacterial load for all Sepsis-1 (T0–12) experiments and Sepsis-2 (T0–6) was 
0.9 × 108 CFU/h (IQR 0.73–1.43) compared with 11.8 × 108 CFU/h (IQR 10.9–14.0) for 
Sepsis-2 (T6–12). No live bacteria were detectable in blood cultures in the control group 
(Additional file 1: Fig. S2). The groups were comparable at the baseline except for blood 
lactate being higher in Sepsis-1 group (Additional file 2: Table S2). Animals in the con-
trol group were stable in circulatory and respiratory parameters throughout the experi-
ment. In both sepsis groups, one animal died between 6 and 7 h after infusion with live 
E. coli following circulatory and respiratory collapse despite the predetermined inter-
ventions. The 12-h sepsis experiments were characterized by decreased mean arterial 
pressure (MAP), SvO2 and PaO2/FiO2 ratio, increased arterial lactate and a transient 
increase in mean pulmonary arterial pressure (MPAP) as compared to baseline and con-
trols (Fig. 1a–f). No differences were found between Sepsis-1 and Sepsis-2. The require-
ment for fluid resuscitation was comparable in Sepsis-1 and Sepsis-2 (2.5 ml/kg/h (IQR 
0.6–7.6) and 3.8 ml/kg/h (IQR 2.5–15.3, p = 0.175). Vasopressor was needed to maintain 
MAP ≥ 60 in both Sepsis-1 (n = 3/5) and Sepsis-2 (n = 3/5) but no difference in vaso-
pressor load was found between the groups (p = 0.746).

Porcine sepsis: hyaluronan, effective HYAL activity and HYAL inhibition in plasma

Plasma hyaluronan concentration increased over time in all three groups and was higher 
in the Sepsis-2 group [158 ng/ml (IQR 147–509)] as compared to Control (117 ng/ml 
(IQR 80–143), p = 0.011) and Sepsis-1 (56 ng/ml (IQR 50–142), p = 0.047) groups after 
12 h (Fig. 2a). Effective plasma HYAL activity decreased over the length of the experi-
ment comparably in all three groups and no difference was found at 12  h (Fig.  2b). 
Concomitantly, activity of endogenous plasma HYAL inhibition increased over time 
in Control and Sepsis-1 groups (Fig.  2c). The within-subject analyses for repeated 
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Fig. 1  a–f Preclinical experiments. Hemodynamic and respiratory changes during the preclinical 
experiments from start (T0) until the experimental endpoint (T12). Control (white), Sepsis-1 (light gray) and 
Sepsis-2 (dark gray). *p < 0.05 compared with control group, p-value from one-way ANOVA with Bonferroni 
correction. No difference found between Sepsis-1 and Sepsis-2
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measurements showed a negative correlation between plasma hyaluronan and effective 
HYAL activity (rs = − 0.38, p = 0.026) and between effective HYAL activity and HYAL 
inhibition (rs = − 0.824, p < 0.001; Additional file  1: Fig. S3a–c). Pooled data showed a 
negative correlation between effective plasma effective HYAL activity and HYAL inhibi-
tion (rs = − 0.697, p < 0.01; Additional file  1: Fig. S4a–c) but not between plasma hya-
luronan concentration and effective HYAL activity (p = 0.091) or plasma hyaluronan 
concentration and HYAL inhibition (p = 0.501).

Septic shock and acute pancreatitis: hyaluronan, effective HYAL activity and HYAL 

inhibition in plasma

Plasma hyaluronan concentrations in patients with septic shock were higher at day 
1 [294 ng/ml (IQR 178–528), p < 0.001] and day 4 [106 ng/ml (IQR 53–179), p < 0.001] 
compared with healthy volunteers [34  ng/ml (IQR 20–46); Fig.  3]. Plasma hyaluronan 
concentrations in patients with acute pancreatitis at days 1 and 4 were comparable to that 
of healthy volunteers (p = 0.075 and p = 0.127, respectively). Plasma hyaluronan concen-
tration was higher for septic shock compared with pancreatitis on both day 1 (p < 0.001) 
and day 4 (p < 0.001). Effective plasma HYAL activity in healthy volunteers [26.9 U/ml 
(IQR 21.6–36.7)] was higher compared to patients with septic shock at day 1 [13.2 U/ml 
(IQR 9.2–17.7), p < 0.001] and day 4 [17.5 U/ml (13.6–23.6), p = 0.001] and to patients 
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Fig. 2  a–c Preclinical experiments. a Plasma hyaluronan, b effective plasma HYAL activity and c plasma 
HYAL inhibition for timepoint T0–6–12. a Plasma hyaluronan concentration increased over time in all groups 
(Control p = 0.046, Sepsis-1 and Sepsis-2 p = 0.043). b Effective plasma HYAL activity decreased during 
the experiment in all groups (Control p = 0.028, Sepsis-1 and Sepsis-2 p = 0.043) whereas c plasma HYAL 
inhibition increased significantly in Control and Sepsis-1 over time (Control p = 0.028, Sepsis-1 p = 0.043). 
Control (white), Sepsis-1 (light gray) and Sepsis-2 (dark gray). p-value from Mann–Whitney U test and 
Wilcoxon signed-rank test
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Fig. 3  a–c Clinical experiments. a Plasma hyaluronan concentration, b effective plasma HYAL activity and c 
plasma HYAL inhibition for control, sepsis day 1 and day 4, pancreatitis day 1 and day 4. p-value from Mann–
Whitney U test
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with acute pancreatitis at day 1 [12.0 U/ml (IQR 6.4–19.6), p = 0.001] and day 4 [8.8 U/
ml (IQR 6.7–13.6), p < 0.001]. Effective plasma HYAL activity was similar for patients 
with septic shock and pancreatitis at day 1 (p = 0.54) but not on day 4 (p = 0.002). The 
endogenous plasma HYAL inhibition in healthy volunteers [33.3% (IQR 28.3–39.0)] was 
lower compared to patients with septic shock at day 1 [44.2% (IQR 33.9–60.0), p = 0.027] 
and day 4 [49.9% (IQR 41.2–55.8), p < 0.001] and to patients with pancreatitis day at day 
4 [41.9% (IQR 38.3–50.2), p = 0.017] but not day 1 [35.3% IQR 31.1–51.9), p = 0.542]. No 
within-subject correlation between plasma hyaluronan, HYAL and/or HYAL inhibition 
was found. Pooling data of septic shock patients and healthy volunteers showed a nega-
tive correlation between plasma hyaluronan and effective HYAL activity (rs = − 0.455, 
p = 0.001). No correlations were found for acute pancreatitis.

Discussion
The main finding of the present study is that during experimental 12-h E. coli sepsis, 
plasma hyaluronan increased with concomitant decrease in effective plasma HYAL 
activity and increasing endogenous HYAL inhibition. Contrary to our hypothesis, 
changes of plasma hyaluronan concentration, effective HYAL activity and endogenous 
HYAL inhibition over time were not specifically associated to E. coli sepsis. Rather, gen-
eral anaesthesia, surgical instrumentation and fluid infusions alone induced comparable 
effects in the control group. Second, in clinical septic shock of variable microbial origin, 
high plasma hyaluronan concentration was also associated with lower HYAL activity 
and higher endogenous HYAL inhibition as compared to healthy volunteers. However, 
in acute pancreatitis plasma hyaluronan concentration remained low, while effective 
HYAL activity decreased.

Baseline levels of plasma hyaluronan in the experimental study are consistent with ear-
lier publications [3–6]. Six and twelve hours after starting bacterial infusion the plasma 
hyaluronan concentration were higher in all groups compared with baseline values. Ster-
ile injury such as surgical instrumentation alone can alter hyaluronan production and 
metabolism [31]. Furthermore, a rapid infusion of crystalloids similar to the preload 
bolus in this study showed increased plasma hyaluronan in humans [32]. Finally, prepa-
ration was done under clean but non-sterile conditions. Although no positive blood 
cultures we found in the control group, an alternative source for infection cannot be 
excluded.

Decreased HYAL activity could increase plasma hyaluronan concentration through 
different mechanisms. In plasma, circulating HYAL is transported to liver endothelial 
cells by endocytosis [34, 35]. Lower HYAL activity resulting in decreased plasma hya-
luronan degradation in the liver could contribute to increased plasma hyaluronan. One 
may also speculate that lower HYAL activity result in accumulation of hyaluronan in the 
extracellular matrix. Combined with increased hyaluronan production in inflammation 
[17, 18] this could lead to edema formation due to the strong water binding capacity 
of hyaluronan. Increased lymph flow during sepsis transports the excess of hyaluronan 
to the lymphatic system [19], where, in normal conditions, most of the hyaluronan is 
degraded in lymph nodes by HYAL. Decreased HYAL activity in the lymph nodes could 
result in an increased drainage of hyaluronan into the circulation resulting in increased 
plasma concentration.
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Effective plasma HYAL activity is decreased in both patients with septic shock and 
acute pancreatitis, while plasma hyaluronan concentration is only increased in septic 
shock. This suggests different mechanisms responsible for plasma hyaluronan concen-
trations in infectious compared to non-infectious inflammation. In addition, increased 
plasma hyaluronan concentration in septic shock is not caused by decreased HYAL 
activity alone. Rather, an imbalance between increased production, decreased degrada-
tion and altered lymph flow are likely to explain these results.

Increased levels of plasma hyaluronan in sepsis are hypothesized to originate from 
shedding of the glycocalyx [36] and HYAL has been proposed as a potential important 
sheddase responsible for damaging the glycocalyx in various clinical conditions [23]. 
Low effective plasma HYAL activity reported herein makes it unlikely that plasma HYAL 
contributes to disruption of the glycocalyx in either acute pancreatitis or septic shock. 
Shedding of the glycocalyx resulting in increased plasma hyaluronan concentrations is 
observed with several other enzymes [23] and TNF-α [37]. Importantly, our observation 
is limited to plasma HYAL activity and thereby we cannot exclude any role of plasma 
membrane associated HYAL. Interestingly, endothelial dysfunction is well described in 
pancreatitis [38] and if shedding of the glycocalyx is thought to be a source for circulat-
ing hyaluronan, an increase of plasma hyaluronan should be expected. However, in our 
study plasma hyaluronan did not increase in acute pancreatitis. This brings in question 
if shedding of the glycocalyx significantly contributes to increased plasma hyaluronan.

Septic shock and pancreatitis result in decreased activity of effective HYAL. Surgical 
instrumentation, fluid infusion and general anaesthesia combined gave similar results. 
Recent publications on HYAL suggest protective properties in acute inflammation. 
Exogenous HYAL diminishes the rolling, adhesion and recruitment of neutrophils, 
decreases cytokine production and limits the albumin diffusion in lung and mesenteric 
interstitium [39–42]. Furthermore, administration of HYAL has been shown to reduce 
edema in both pre- and clinical studies [43–45] and is even suggested as a treatment 
option for COVID-19 [46]. Future research on HYAL and septic shock, acute pancreati-
tis and major surgery are, therefore, of high interest.

Limitations

Our study has several limitations. The duration of our 12-h sepsis model might be not 
long enough to induce plasma hyaluronan concentrations as high as seen in clinical sep-
sis. Hyaluronan, HYAL activity and HYAL inhibition in plasma were analyzed at two 
timepoint during ongoing sepsis (T6 and T12). Its is therefor unclear if HYAL activity 
increases in plasma during early sepsis before HYAL inhibition increases. The small 
group size in both the preclinical and clinical experiments limit the interpretation of the 
results. Finally, plasma hyaluronan, HYAL activity and its endogenous inhibition might 
not accurately reflect any potential changes in the extracellular space or lymphatic sys-
tem, limiting the generalization of our findings.

Conclusion
Sepsis but also anaesthesia, surgical procedures and fluid infusions are associ-
ated with increasing endogenous plasma HYAL inhibition and decreasing effective 
plasma HYAL activity, whereas acute pancreatitis is only associated with decreased 
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effective plasma HYAL activity. Endogenous plasma HYAL inhibition may regulate 
plasma HYAL activity in select infections (E. coli) and in inflammation (post-surgery, 
anaesthesia, fluid infusions). Changes in effective plasma HYAL activity alone do not 
explain plasma hyaluronan concentrations in bacteremia/sepsis but may, neverthe-
less, contribute. Increased plasma hyaluronan concentrations in sepsis are most likely 
caused by increased production or altered lymph flow. Plasma HYAL most likely can-
not be considered as an important sheddase.
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SVRI: Systemic vascular resistance index; TNF-α: Tumor necrosis factor alpha.
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