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Methods: Male B57BL/6J(c) mice (n=>5-10 per group) were sedated and mechani-
cally ventilated. Trauma was induced by bilateral lower limb fractures and crush injuries
to the liver and small intestine. Shock was induced by blood withdrawals until a mean
arterial pressure of 25-30 mmHg was achieved. Groups reflected trauma and shock

for 30 min (TS30) and trauma and shock for 90 min (T590). Control groups included
ventilation only (V90) and trauma only (T90).

Results: Mice in the TS90 group had significantly increased base deficit compared to
the V90 group. Mortality was 10% in the TS30 group and 30% in the TS90 group. ROTEM
profile was more hypocoagulable, as shown by significantly lower maximum clot firm-
ness (MCF) in the TS30 group (43.5 [37.5-46.8] mm) compared to the TS90 group (52.0
[47.0-53.0] mm, p=0.04). ROTEM clotting time and parameters of clot build-up did not
significantly differ between groups.

Conclusions: TIC characteristics change with shock duration. Contrary to the hypoth-
esis, a shorter duration of shock was associated with decreased maximum clotting
amplitudes compared to a longer duration of shock. The effect of shock duration on
TIC should be further assessed in trauma patients.
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Background

Haemorrhage after trauma is a leading cause of preventable mortality worldwide [1].
Haemorrhaging trauma patients frequently present with trauma-induced coagulopa-
thy (TIC), which is associated with increased transfusion requirements and mortality
[2, 3]. TIC can manifest with hypocoagulable, hypercoagulable or mixed characteristics
[4]. A hypocoagulable state is often present early after trauma and is characterised by
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coagulation factor depletion, dysfunctional platelets and hyperfibrinolysis [5-7]. These
components lead to an unstable clot formation and reduced clot strength, resulting in
a disability to control the ongoing haemorrhage [8]. Hypocoagulable profiles can shift
towards a more hypercoagulable state, characterised by increased thrombin generation,
platelet activation and fibrinolytic shutdown [9-11]. Hypercoagulability often develops
later on after trauma, but can also be present as early as minutes to hours after trauma
[12-14]. The mechanisms underlying TIC characteristics are largely unknown. Shock
is thought to play a major role in hypocoagulation, and its presence is associated with
adverse outcomes [2]. The duration of shock differs between trauma patients; however,
it is currently unknown how the duration of shock influences TIC [15]. Unravelling the
modulatory effects of shock duration on TIC characteristics has implications for the tim-
ing of treatment strategies aimed at reducing TIC. In this study the aim was to compare
the effects of shock duration on TIC. We hypothesised that longer duration of shock, is
associated with a more hypocoagulable profile compared to short duration of shock.

Methods

Ethics

Experiments were performed with approval of the Institutional Animal Care and Use
Committee of the Amsterdam UMC, location AMC. Procedures were performed
in accordance with the European Parliament directive (2010/63/EU) and the Dutch
national law the Experiments on Animals Act (Wod, 2014). Male B57BL/6] (c) mice were
ordered from Charles River (USA) and housed in the on-site animal housing facility
7 days before the experiment. Animals had excess to food (Teklad global 16% protein,
Envigo, USA) and water ad libitum with regular 12-h day—night cycle. All mice were
8 weeks during the experiment with a weight of 20-30 g.

Animal model

Mice were sedated with 3—4% isoflurane (Isoflutek, Karizoo, Spain) and injected intra-
peritoneally with 0.06 mg/kg fentanyl (Hameln, Germany). During the tracheostomy
procedure, mice received mask ventilation (2% isoflurane, 50% Fio2). After tracheos-
tomy, mice were mechanically ventilated for the remaining part of the experiment (Ven-
tElite, Harvard Apparatus, USA) with tidal volumes of 7 ml/kg, respiratory rate of 160
breaths per minute and an inspiratory/expiratory ratio of 1:1.5 and FiO, of 40%. Mice
remained anaesthetized throughout the entire experiment with 1-2% isoflurane. Anaes-
thetic depth was deemed adequate if there was no reaction to painful stimulus, observed
by absence of pedal reflex and/or change in blood pressure. An inspiratory sigh of 20%
was performed every 30 min as recruitment manoeuvre.

The right carotid artery (arterial blood pressure monitoring) and jugular vein were
cannulated after which mice received intravenous fentanyl 0.12 mg/kg (Pump 11 Pico
Plus Elite, Harvard Apparatus, USA) and 20 ml/kg maintenance fluids consisting of
Ringer’s lactate supplemented with 15.3 mM glucose and 2 mM sodium bicarbonate
(BBraun Perfuser, Germany). Temperature was monitored continuously with a rectal
thermometer and kept at 37 °C using a heated table and heat lamp.

Mice were randomised to one of the following groups: 90 min ventilation (V90),
trauma+ 90 min ventilation (T90), trauma+ 30 min shock (TS30), trauma-+90 min
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shock (TS90). Trauma consisted of bilateral lower limb fractures using two haemostatic
forceps. Median laparotomy was performed to induce crush injury by clamping the
small intestine distally of Treitz ligament five times for 2 s. Liver injury was achieved by
clamping 1 cm of the right lobe for 2 s. Following trauma, the abdomen was closed.

In group TS30 and TS90, preceding trauma, 200 pl blood was drawn through the
carotid artery. Following trauma, additional blood was drawn to achieve a target
mean arterial pressure (MAP) of 25-30 mmHg. After this blood pressure was reached
(20 min after cannulation), no additional blood was withdrawn. Temperature was pas-
sively lowered to 35 °C in the TS30 and TS90 group and maintained at this temperature
throughout the experiment. At the end of the experiment, blood was drawn though the
carotid artery or via heart puncture. An overview of the experimental setup is shown in
Additional file 1: Fig. S1.

Blood sampling

At the end of the experiment, the first 50 pl blood/saline was discarded, after which
200 pl blood was collected in a heparin coated syringe for arterial blood gas analysis
(RAPIDPoint 500, Siemens, Germany). The next 50 ul blood was discarded to prevent
heparin contamination and the remaining blood was collected in 3.2% sodium citrate
(1:9 ratio). A part of the collected citrated whole blood was used for rotational throm-
boelastometry (ROTEM, Werfen, Spain). The remaining citrated blood was centrifuged
twice at 2500g for 15 min at 4 °C (centrifuge 5430R; rotor FA-45-30-11, Eppendorf,
Hamburg, Germany) and frozen in liquid nitrogen before storage at — 80 °C until further
analysis.

Rotational thromboelastometry

The ex-tem assay measures the tissue factor pathway by addition of 7 ul ex-tem reagent
(containing tissue factor) and 7 pl star-tem (containing phospholipids and calcium) to
105 ul citrated whole blood sample. EXTEM was performed using ROTEM minicups
(Werfen, Spain), according to manufacturer’s guidelines. Clotting time (CT) meas-
ures the initiation of clot formation, the alpha («) angle represents the angle between
the baseline and the tangent through the 2 mm point. Maximum clot firmness (MCF)
depicts the maximum clot strength and maximum lysis (ML) shows the maximum lysis
in percentage detected during the 90 min run time.

Enzyme-linked immunosorbent assay (ELISA)
D-dimer levels were measured using ELISA according to manufacturer’s instructions
(Elabscience, USA).

Organ wet/dry ratios

The left lung, part of the liver, and left kidney were collected and wet weight was deter-
mined at after the experiment. After drying the organs at 37 °C for 7 days, they were
weighted again to determine wet/dry ratios.
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Sample size analysis

Based on pilot experiments, we determined 8 mice were needed to detect a 10 mm dif-
ference in ROTEM MCEF between TS30 and TS90 with a common standard deviation
(SD) of 5 mm (a=0.05 and a power of 80%). To account for 20% mortality in our model,
10 mice were used in the TS30 and TS90 group.

Statistical analysis

Data were analysed using SPSS version 25.0 (IBM, New York, USA). Graphs were made
using GraphPad Prism version 9.0 (San Diego, USA). The histograms of all parameters
were visually inspected for distribution. Parametric data were presented as mean with
standard deviation (SD). Non-parametric data were presented as median with interquar-
tile range (IQR) and analysed with Kruskal-Wallis test with post hoc Dunn’s test, cor-
rected for multiple testing. Binominal data were analysed with the Fisher’s exact test. A p
value of less than 0.05 was considered to be statistically significant.

Results

Trauma, shock and mortality

The amount of blood withdrawn to reach the predefined MAP target was similar
between groups: 330 pl (£40 pl) in TS30 group and: 350 ul (£ 60 pl) in the TS90 group.
TS90 resulted in increased base deficit compared to the control groups (Fig. 1). Mortal-
ity in the TS30 group was 10%, compared to 30% in the TS90 shock group (p=0.58). All
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Fig. 1 Haemodynamic parameters during different shock durations. Data are presented as median with
interquartile range. A Mean arterial pressure. B base deficit. C Heart rate. D Urine output. V90 =90 min
ventilation, T90 =trauma + 90 min ventilation, TS30 =trauma + 30 min shock, TS30 =trauma 4+ 90 min shock.
*p <0.05 between groups
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Fig. 2 Effect of shock duration on ROTEM parameters. Data are presented as median with interquartile
range. A EXTEM clotting time. B EXTEM a-angle. € EXTEM maximum clot firmness. D EXTEM maximum
lysis. V90 =90 min ventilation, T90 = trauma + 90 min ventilation, TS30 = trauma + 30 min shock,
TS30=trauma+ 90 min shock. *p <0.05 between groups

Table 1 Effect of shock on arterial blood gas analysis

V90 T90 TS30 TS90

pH 1(7.20-7.34) 7.27 (7.15-7.31) 7.23(7.21-7.28) 7.08(7.01-7.31)
pCO, (mMmHg) 340(327 49.1) 40.6 (31.2-484) 36.2 (25.7-394) 38.5(30.1-51.7)
pO, (mmHg) 158.7 (106.5-194.6) 1687(1380 194.0) 195.9 (179.4-214.4) 182.9 (140.7-207.8)
HCO; (mM) 174(160 19.2) 9 (14.5-18.1) 15.2(10.7-17.0) 13.7(10.3-16.6)
sO, (%) 98.0 (96.1-98.3) 977(963 98.4) 98.0(97.3-985) 96.8 (95.5-98.0)
Na* (mM) 1467(1431 147.4) 424( 41.8-144.8) 432( 40.1-144.0) 1430(1408 143.6)
K+ (mM) 8(5.5-64) .5 (6.4-7.0) .5 (6.2-6.9) 0(5.8-8.1)
Ca?* (mM) 096(088 1.03) 01 (0.93-1.03) 112( 07- 115) 110(107 1.22)
Glucose (mM) 9 (6.1-9.4) 0 (6.3- 108) 3(80-11.2) 7 (5.4-10.6)
Lactate (mM) 3.54(2.73-4.03) 346 (3.05-3.98) 4.48 (3.26— 725) 614(415 9.12)

Data are presented as median with interquartile range. V90 =90 min ventilation, T90 =trauma + 90 min ventilation,
TS30=trauma + 30 min shock, TS30 =trauma + 90 min shock

mortality was due to trauma and shock. In the TS30 group mortality occurred 15 min
after randomisation. In the TS90 group mortality occurred 40, 80 and 90 min after ran-

domisation. All mice in the control groups survived (Table 1).
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Table 2 Blood counts, coagulation and organ oedema

V90 T90 TS30 TS90

Haemoglobin (mM) 5(8.1-8.8) 4 (8.0-9.6) 1(6.7-7.8) (6 7-7.5)
Haematocrit (%) 40 (39-42) 40 (38-46) 4 (32-37) 4 (32-36)
Leukocytes (x 10%/) 1.35(0.93-1.63) 2.30(1.95-3.55) 1 90( .50-3.20) 2.05(1.23-2.83)
Platelet count (x 10%/1) 91 (711-942) 855 (804-875) 655 (299-799) 693 (533-784)
o-dimer (ng/ml) 1535 (1071-1595) 1060 (902-1362) 1067 (848-1278) 920 (865-938)
Organ wet/dry ratios

Lung 39(3.6-43) 39(3.3-47) 4.0 (3.7-4.5) 4.1 (34-5.0)

Kidney 35(34-38) 33(3.2-3.6) 36(34-38) 36(3.5-37)

Liver 33(3.2-34) 33(3.1-34) 32(3.1-33) 34(3.1-3.5)

Data are presented as median with interquartile range. V90 =90 min ventilation, T90 =trauma + 90 min ventilation,
TS30 =trauma + 30 min shock, TS30 =trauma + 90 min shock

Coagulation

Ex-tem clotting time and alpha angle were not significantly different between groups
(Fig. 2). However, maximum clotting amplitude was significantly decreased in the TS30
compared to TS90, p=0.04 (Fig. 2). Median max lysis and D-dimer levels did not differ
significantly between groups (Fig. 2; Table 2).

Organ oedema

Trauma and shock did not result in significant differences in lung, kidney and liver wet/
dry ratios, compared to ventilation and trauma controls (Table 2). Shock duration did
not significantly influence organ oedema.

Discussion

In this murine model of trauma and shock, we showed that short duration of shock is
associated with more hypocoagulable characteristics compared to longer duration of
shock.

Previous research shows that hypocoagulability is present as early as minutes after
traumatic injury [2, 16]. Both the severity of tissue injury as well as the presence of shock
worsens TIC [2]. Furthermore, shock and hypoperfusion are major contributors to the
release of tissue plasminogen activator (tPA), converting plasminogen into plasmin,
resulting in hyperfibrinolysis after trauma [17, 18]. In our model, mean values of maxi-
mum lysis and p-dimer levels did not significantly differ between groups. This could be
explained by the different fibrinolytic system in mice compared to humans (i.e., shorter
tPA half-life, clots are more resistant to endogenous breakdown). [19].

Our main finding, that persistence of shock reduces hypocoagulable characteristics,
was contrary to our hypothesis and may seem counterintuitive. However, various studies
have shown that a transition from hypocoagulable to hypercoagulable characteristics can
occur early after trauma [12—14, 20]. This early shift might be explained by the increas-
ing presence of circulating pro-coagulant platelets, exhaustion of anti-coagulant path-
ways and fibrinolytic shutdown [9, 11, 21, 22]. In addition, studies show that minimal
amounts of coagulation factors are required for relatively normal thrombin generation
[23], which could explain why thrombin generation can be increased after trauma [10].
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The effect we observed could also be inflammation-induced, as pro-inflammatory path-
ways are tightly linked with hypercoagulability and thrombosis. [24, 25].

Our results add to the existing literature by showing that a reduction in hypocoagu-
lability can occur early after trauma and is influenced by shock duration. Of note, the
increased clotting amplitude after 90 min of shock was driven by endogenous responses,
as animals did not receive treatment.

Our findings of the effect of shock duration on TIC characteristics may have several
implications. Our results underline the importance of timing of treatment, as TIC
characteristics change over time. Benefits of an early aggressive approach have been
shown in trials investing early transfusion of blood components, as well as tranexamic
acid [27, 28]. With persistence of shock, targeting dysfunctional platelets and immu-
nomodulation may convey benefits for the severely injured trauma patient. However,
these aspects of trauma-induced shock and coagulopathy need further explorations.

There are limitations to this study. Our model of traumatic shock consists of trau-
matic injury in combination with controlled blood withdrawals. Although the abdom-
inal trauma results in bleeding, it is unlikely that mice continue to bleed excessively
during the shock period. This means that after the blood withdrawals a relatively
stable state ensues, which differs somewhat form the trauma patient with uncon-
trolled bleeding. Although we found decreased clot strength in the TS30 group com-
pared to the TS90 group, both of these groups did not differ significantly from the
control groups. This might be attributable to the smaller samples size in the control
groups, decreasing the chance of detecting differences between the control groups
and the shock groups. In addition, since more mice died after 90 min shock com-
pared to 30 min shock, survival bias might explain part of the observed effect. The
mice that died during the experiments were not included in our analysis, lowering the
sample size and, therefore, the power to detect a difference in the primary outcome.
Finally, we have not dissected the coagulation pathways explaining the difference in
maximum clot firmness in the ROTEM. We can, therefore, only speculate about the
mechanisms.

In conclusion, hypocoagulability is part of early endogenous TIC and alters with
prolonged shock duration. More research is needed to unravel the mechanisms
behind this shift to develop more targeted treatments for trauma-induced shock.
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