- Poster presentation
- Open Access
- Published:
Effect of a Lung Rest Strategy During Ecmo in a Porcine Acute Lung Injury Model
Intensive Care Medicine Experimental volume 3, Article number: A503 (2015)
Introduction
ECMO is used to treat patients who develop refractory hypoxemia and to provide a more protective ventilation. Several guidelines recommend “lung rest” strategies based on variable ventilatory parameters. However, there is limited evidence to support this strategy.
Objectives
To compare the effect of a lung rest strategy based on near-apneic ventilation (Vt 1-2 ml/kg, PEEP 10, respiratory rate - RR 5 min) versus conventional (Vt 10ml/kg, PEEP 5, RR 20/min), and standard protective ventilation (Vt 6ml/kg, PEEP 10, RR 20/min).
Methods
Twenty-four domestic pigs (26-36 kg) were anesthetized, mechanically ventilated (Vt 10 ml/kg, PEEP 5, O2 1.0) and invasively monitored. Six animals were used as Sham. in the other 18 lung injury was induced by saline lavages (30 ml/kg per lavage) performed repeatedly in both supine and prone position until PaO2/FiO2 dropped below 250. They were then subjected to a 2-hour injurious ventilation with PCV, PEEP = 0, Pinsp = 40 cmH2O, RR = 10/min, I:E = 1:1, one hour in prone and the other in supine. After completing lung injury (time 0) animals were connected to a saline primed- MEDOS Hilite ECMO circuit by inserting a AVALON 23F double-lumen cannula through the external jugular vein. Blood flow was set at 60-70% of cardiac output. Animals were randomized into one of the three groups and ventilated according to randomization for the following 24 hours. Respiratory and hemodynamic data were collected at times 0, 3, 6, 12, 18 and 24h. After euthanizing animals at time 24h, tissue samples were extracted from the lungs and injury evaluated and scored by light microscopy. Total lung water content was estimated by the wet-dry weight ratio.
Results
PaO2 decreased significantly in all groups after injury, but was progressively restored after ECMO start, despite the study group. Mean arterial pressure remained within normal limits throughout the study period, whereas MPAP increased significantly after injury but reached values close to SHAM soon after ECMO initiation. Lung wet-dry weight ratio and histological injury score increased significantly in all study groups compared to SHAM. Although non-significant, there was a trend towards a better histological injury score when Vt was reduced.
Conclusions
In this preliminary analysis, we found no clear advantage of reducing Vt when applying ECMO to support a double-hit animal model of ARDS in regard to resolution of lung edema or gas exchange. However, further work is required to determine if the non-significant reduction in lung injury observed in the near-apneic strategy may be relevant in providing further protection to the injured lungs supported by ECMO.
References
Gattinoni L, Carlesso E, Langer T: Towards ultraprotective mechanical ventilation. Curr Opin Anesthesiol. 2012, 25 (2): 141-147. 10.1097/ACO.0b013e3283503125.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Araos, J., Cruces, P., Tapia, P. et al. Effect of a Lung Rest Strategy During Ecmo in a Porcine Acute Lung Injury Model. ICMx 3 (Suppl 1), A503 (2015). https://doi.org/10.1186/2197-425X-3-S1-A503
Published:
DOI: https://doi.org/10.1186/2197-425X-3-S1-A503
Keywords
- Lung Injury
- Acute Lung Injury
- External Jugular Vein
- Protective Ventilation
- Injured Lung