- Poster presentation
- Open access
- Published:
0852. Selective decontamination of the digestive tract modulates the metabolic profile in a ventilator-induced lung injury model
Intensive Care Medicine Experimental volume 2, Article number: P61 (2014)
Introduction
Acute lung injury induced by mechanical ventilation [ventilator-induced lung injury (VILI)]is characterized by a particular metabolic profile in the lung and in the systemic compartment [1]. Also, VILI has been associated with an increase in intestinal permeability [2]. We hypothesized that selective decontamination of the digestive tract (SDD) can modulate the metabolic profile associated with mechanical ventilation.
Objectives
To determine (1) the metabolic profile associated with VILI to identify potential biomarkers; (2) whether SDD modifies this metabolic profile associated with VILI.
Methods
Rats were pretreated with antibiotics by oral gavage for SDD (polymyxin E 30 mg/ml, tobramycin 12 mg/ml) or vehicle (water) as control. Twenty four hours later, rats were ventilated for 2.5 h. VILI was induced by using high tidal volume (VT= 25 ml/kg) + PEEP = 0 cm H2O. As control, rats were ventilated with low VT (9 ml/kg) + PEEP = 5 cm H2O. We studied four groups: Low VT-SDD, High VT-SDD, Low VT-vehicle and High VT-vehicle (n=20 per group). Lung tissue and serum were analyzed by 1H-nuclear magnetic resonance spectroscopy (H-MRS) and high pressure liquid chromatography coupled to quadruple time-of-flight (LC- MS-QTOF), respectively. Principal component (PCA) [unsupervisated] and partial least squares (PLS) [supervised] analyses were performed. Accurate masses of features representing significant differences were searched against the MELTING, KEGG, LIPIDMAPDS and HMDB databases. We followed the Principles of Laboratory Animal Care (2010/63/UE 22-09, RD 53/2013 BOE 1-02, ley 32/2007 BOE 7-11).
Results
We found different metabolic patterns between rats ventilated with low and high VT, and also between ventilated rats with and without SDD. In the lung, the main metabolic pathways affected are involved in energy metabolism (creatine, glucose, lactate, alanine, glutamate), protein synthesis (leucine) and membrane lipids (choline, phosphoethanolamine). In serum, the main affected pathways were related to conjugated bile acids, ceramide, Land´s cycle and carnitine biosynthesis.
Conclusions
(1) Mechanical ventilation can change the metabolic profile in the lung and in the systemic compartment. (2) SDD can modify this metabolic changes induced by mechanical ventilation. (3) Metabolic studies can be useful to identify biomarkers for the diagnosis of acute lung injury, and to design new therapeutic strategies.
References
Izquierdo-Garcia JL, et al.: A Metabolomic Approach to the Pathogenesis of Ventilator-induced Lung Injury. Anesthesiology 2014,120(3):694–702. 10.1097/ALN.0000000000000074
Guery BP, et al.: Ventilation-induced lung injury is associated with an increase in gut permeability. Shock 2003,19(6):559–63. 10.1097/01.shk.0000070738.34700.bf
Grant acknowledgment
FIS 12/02898, FIS 11/02791, FIS 12/02451, European Network (7th FP) ITN 264864, CA11/00260.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rojas, Y., Naz, S., Izquierdo, J. et al. 0852. Selective decontamination of the digestive tract modulates the metabolic profile in a ventilator-induced lung injury model. ICMx 2 (Suppl 1), P61 (2014). https://doi.org/10.1186/2197-425X-2-S1-P61
Published:
DOI: https://doi.org/10.1186/2197-425X-2-S1-P61