National Research Council (1983) Selenium in nutrition: Revised Edition. The National Academies Press, Washington, DC
Google Scholar
Weeks ME (1932) The discovery of the elements. VI. Tellurium and selenium. J Chem Educ 9:474
Article
CAS
Google Scholar
Gladyshev VN, Hatfield DL (1999) Selenocysteine-containing proteins in mammals. J Biomed Sci 6:151–160
Article
CAS
PubMed
Google Scholar
Barceloux DG (1999) Selenium. J Toxicol Clin Toxicol 37:145–172
Article
CAS
PubMed
Google Scholar
Cupp-Sutton K, Ashby M (2016) Biological chemistry of hydrogen selenide. Antioxidants 5:42
Article
PubMed Central
CAS
Google Scholar
Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94–97
Article
CAS
PubMed
Google Scholar
Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798
Article
CAS
PubMed
Google Scholar
Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599
Article
CAS
PubMed
Google Scholar
Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross AC, Caballero BH, Cousins RJ, et al (2012) Modern nutrition in health and disease: Eleventh edition. Wolters Kluwer Health Adis (ESP)
Chun OK, Floegel A, Chung S-J et al (2010) Estimation of antioxidant intakes from diet and supplements in U.S. adults. J Nutr 140:317–324
Article
CAS
PubMed
Google Scholar
Ganyc D, Self WT (2008) High affinity selenium uptake in a keratinocyte model. FEBS Lett 582:299–304
Article
CAS
PubMed
Google Scholar
Misra S, Kwong RWM, Niyogi S (2012) Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout. J Exp Biol 215:1491–1501
Article
CAS
PubMed
Google Scholar
Esaki N, Nakamura T, Tanaka H et al (1981) Enzymic synthesis of selenocysteine in rat liver. Biochemistry 20:4492–4496
Article
CAS
PubMed
Google Scholar
Esaki N, Nakamura T, Tanaka H, Soda K (1982) Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem 257:4386–4391
CAS
PubMed
Google Scholar
Yudkoff M (2012) Chapter 42 - Disorders of amino acid metabolism. In: Brady ST, Siegel GJ, Albers RW, Price DL (eds) Basic Neurochemistry (Eighth Edition). Academic Press, New York, pp 737–754
Chapter
Google Scholar
Daher R, Van Lente F (1992) Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations. J Trace Elem Electrolytes Health Dis 6:189–194
CAS
PubMed
Google Scholar
Wray JR, Davies A, Sefton C et al (2019) Global transcriptomic analysis of the arcuate nucleus following chronic glucocorticoid treatment. Mol Metab 26:5–17
Article
CAS
PubMed
PubMed Central
Google Scholar
Seale LA (2019) Selenocysteine β-Lyase: biochemistry, regulation and physiological role of the selenocysteine decomposition enzyme. Antioxidants 8:357
Article
CAS
PubMed Central
Google Scholar
Becker N-P, Martitz J, Renko K et al (2014) Hypoxia reduces and redirects selenoprotein biosynthesis. Met Integr Biometal Sci 6:1079–1086
Article
CAS
Google Scholar
Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134
Article
CAS
PubMed
Google Scholar
Kumar S, Björnstedt M, Holmgren A (1992) Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207:435–439
Article
CAS
PubMed
Google Scholar
Ganther HE (1971) Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by gluthathione reductase. Biochemistry 10:4089–4098
Article
CAS
PubMed
Google Scholar
Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64
Article
CAS
PubMed
Google Scholar
Byard JL (1969) Trimethyl selenide. A urinary metabolite of selenite. Arch Biochem Biophys 130:556–560
Article
CAS
PubMed
Google Scholar
Kobayashi Y, Ogra Y, Ishiwata K et al (2002) Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A 99:15932–15936
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer IS, Fischer DD, Halverson AW, Olson OE (1969) Identification of a major selenium excretory product in rat urine. Biochim Biophys Acta BBA 177:336–342
Article
CAS
PubMed
Google Scholar
Suzuki Y, Hashiura Y, Matsumura K et al (2010) Dynamic pathways of selenium metabolism and excretion in mice under different selenium nutritional statuses. Metallomics 2:126–132
Article
CAS
PubMed
Google Scholar
McConnell KP, Portman OW (1952) Excretion of dimethyl selenide by the rat. J Biol Chem 195:277–282
CAS
PubMed
Google Scholar
McConnell KP, Roth DM (1966) Respiratory excretion of selenium. Proc Soc Exp Biol Med 123:919–921
Article
CAS
PubMed
Google Scholar
Hoffmann PR, Berry MJ (2005) Selenoprotein synthesis: a unique translational mechanism used by a diverse family of proteins. Thyroid 15:769–775
Article
CAS
PubMed
Google Scholar
Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12:793–795
Article
CAS
PubMed
Google Scholar
Kim H-Y, Gladyshev VN (2005) Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol 3:e375
Article
PubMed
PubMed Central
CAS
Google Scholar
Seiler A, Schneider M, Förster H et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248
Article
CAS
PubMed
Google Scholar
Imai H, Hirao F, Sakamoto T et al (2003) Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun 305:278–286
Article
CAS
PubMed
Google Scholar
Jakupoglu C, Przemeck GKH, Schneider M et al (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25:1980–1988
Article
CAS
PubMed
PubMed Central
Google Scholar
Conrad M, Jakupoglu C, Moreno SG et al (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24:9414–9423
Article
CAS
PubMed
PubMed Central
Google Scholar
Papp LV, Lu J, Bolderson E et al (2010) SECIS-binding protein 2 promotes cell survival by protecting against oxidative stress. Antioxid Redox Signal 12:797–808
Article
CAS
PubMed
Google Scholar
Goodyear-Bruch C, Pierce JD (2002) Oxidative stress in critically ill patients. Am J Crit Care 11:543–551
Article
PubMed
Google Scholar
Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd ed. Clarendon Press ; Oxford University Press, Oxford : New York
Google Scholar
Burk RF (2002) Selenium, an antioxidant nutrient. Nutr Clin Care Off Publ Tufts Univ 5:75–79
Article
Google Scholar
Rose AH, Hoffmann P (2015) Selenoproteins and cardiovascular stress. Thromb Haemost 113:494–504
Article
PubMed
Google Scholar
Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806
Article
CAS
PubMed
Google Scholar
Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta BBA 1790:1478–1485
Article
CAS
PubMed
Google Scholar
Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134
Article
CAS
PubMed
Google Scholar
Yant LJ, Ran Q, Rao L et al (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502
Article
CAS
PubMed
Google Scholar
Björnstedt M, Hamberg M, Kumar S et al (1995) Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem 270:11761–11764
Article
PubMed
Google Scholar
Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109
Article
PubMed
Google Scholar
Maulik N, Das DK (2008) Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta BBA 1780:1368–1382
Article
CAS
PubMed
Google Scholar
Kryukov GV, Kumar RA, Koc A et al (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99:4245–4250
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinbrenner H, Alili L, Bilgic E et al (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40:1513–1523
Article
CAS
PubMed
Google Scholar
Steinbrenner H, Steinbrenner H, Bilgic E et al (2006) Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 40:936–943
Article
CAS
PubMed
Google Scholar
Atkinson JB, Hill KE, Burk RF (2001) Centrilobular endothelial cell injury by diquat in the selenium-deficient rat liver. Lab Invest 81:193–200
Article
CAS
PubMed
Google Scholar
Traulsen H, Steinbrenner H, Buchczyk DP et al (2004) Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic Res 38:123–128
Article
CAS
PubMed
Google Scholar
Aaseth J, Frey H, Glattre E et al (1990) Selenium concentrations in the human thyroid gland. Biol Trace Elem Res 24:147–152
Article
CAS
PubMed
Google Scholar
Sakr Y, Reinhart K, Bloos F et al (2007) Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 98:775–784
Article
CAS
PubMed
Google Scholar
Hawker FH, Stewart PM, Snitch PJ (1990) Effects of acute illness on selenium homeostasis. Crit Care Med 18:442–446
Article
CAS
PubMed
Google Scholar
Forceville X, Vitoux D, Gauzit R et al (1998) Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 26:1536–1544
Article
CAS
PubMed
Google Scholar
de Oliveira Iglesias SB, Leite HP, Paes ÂT et al (2014) Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency. Crit Care 18:R101
Article
PubMed Central
Google Scholar
Strachan S, Wyncoll D (2009) Selenium in critically ill patients. J Intensive Care Soc 10:38–43
Article
Google Scholar
Neve J, Vertongen F, Peretz A, Carpentier YA (1989) Usual values of selenium and glutathione peroxidase in a Belgian population. Ann Biol Clin 47:138–143
CAS
Google Scholar
Nève J (1991) Methods in determination of selenium states. J Trace Elem Electrolytes Health Dis 5:1–17
PubMed
Google Scholar
Goldson AJ, Fairweather-Tait SJ, Armah CN et al (2011) Effects of selenium supplementation on selenoprotein gene expression and response to influenza vaccine challenge: a randomised controlled trial. PLoS ONE 6:e14771
Article
CAS
PubMed
PubMed Central
Google Scholar
Fairweather D, Cihakova D (2009) Alternatively activated macrophages in infection and autoimmunity. J Autoimmun 33:222–230
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson SM, Lei X, Prabhu KS (2011) Selenium levels affect the IL-4–induced expression of alternative activation markers in murine macrophages. J Nutr 141:1754–1761
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson BA, Yoo M-H, Sano Y et al (2009) Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression. BMC Immunol 10:57
Article
PubMed
PubMed Central
CAS
Google Scholar
Bi C-L, Wang H, Wang Y-J et al (2016) Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharmacol 780:159–165
Article
CAS
PubMed
Google Scholar
Shi X, Wang W, Zheng S et al (2019) Selenomethionine relieves inflammation in the chicken trachea caused by LPS though inhibiting the NF-κB pathway. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01789-1 [Epub ahead of print]
Hoffmann FW, Hashimoto AC, Shafer LA et al (2010) Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140:1155–1161
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson BA, Yoo M-H, Shrimali RK et al (2010) Role of selenium-containing proteins in T-cell and macrophage function. Proc Nutr Soc 69:300–310
Article
CAS
PubMed
PubMed Central
Google Scholar
Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268
Article
CAS
PubMed
Google Scholar
Bleys J (2008) Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168:404–410
Article
CAS
PubMed
Google Scholar
Fairweather-Tait SJ, Bao Y, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383
Article
CAS
PubMed
Google Scholar
Ventura M, Melo M, Carrilho F (2017) Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol 2017:1–9
Article
CAS
Google Scholar
Bermano G, Nicol F, Dyer JA et al (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311:425–430
Article
CAS
PubMed
PubMed Central
Google Scholar
Arthur JR, Nicol F, Beckett GJ (1992) The role of selenium in thyroid hormone metabolism and effects of selenium deficiency on thyroid hormone and iodine metabolism. Biol Trace Elem Res 34:321–325
Article
CAS
PubMed
Google Scholar
Fliers E, Bianco AC, Langouche L, Boelen A (2015) Thyroid function in critically ill patients. Lancet Diabetes Endocrinol 3:816–825
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger MM, Lemarchand-Béraud T, Cavadini C, Chioléro R (1996) Relations between the selenium status and the low T3 syndrome after major trauma. Intensive Care Med 22:575–581
Article
CAS
PubMed
Google Scholar
Reilly C (2006) Selenium in food and health, 2nd ed. Springer US
Underwood EJ (1977) Selenium. In: Underwood EJ (ed) Trace elements in human and animal nutrition (Fourth Edition). Academic Press, pp 302–346
Chapter
Google Scholar
Beck MA, Levander OA, Handy J (2003) Selenium deficiency and viral infection. J Nutr 133:1463S–1467S
Article
CAS
PubMed
Google Scholar
Chen J (2012) An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr 21:320–326
PubMed
Google Scholar
McCarty MF (1986) An antithrombotic role for nutritional antioxidants: implications for tumor metastasis and other pathologies. Med Hypotheses 19:345–357
Article
CAS
PubMed
Google Scholar
Schiavon R, Freeman GE, Guidi GC et al (1984) Selenium enhances prostacyclin production by cultured endothelial cells: possible explanation for increased bleeding times in volunteers taking selenium as a dietary supplement. Thromb Res 34:389–396
Article
CAS
PubMed
Google Scholar
Gharipour M, Sadeghi M, Behmanesh M et al (2017) Selenium homeostasis and clustering of cardiovascular risk factors: a systematic review. Acta Bio-Medica Atenei Parm 88:263–270
CAS
Google Scholar
Hu XF, Stranges S, Chan LHM (2019) Circulating selenium concentration is inversely associated with the prevalence of stroke: results from the Canadian Health Measures Survey and the National Health and Nutrition Examination Survey. J Am Heart Assoc 8:e012290
PubMed
PubMed Central
Google Scholar
Virtamo J, Valkeila E, Alfthan G et al (1985) Serum selenium and the risk of coronary heart disease and stroke. Am J Epidemiol 122:276–282
Article
CAS
PubMed
Google Scholar
Salonen J, Alfthan G, Huttunen J et al (1982) Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet 320:175–179
Article
Google Scholar
Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E (2006) Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 84:762–773
Article
CAS
PubMed
Google Scholar
Liu Y-H, Lu M, Hu L-F et al (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17:141–185
Article
CAS
PubMed
Google Scholar
Ahmad A, Dempsey S, Daneva Z et al (2018) Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci 19:2605
Article
PubMed Central
CAS
Google Scholar
May SW, Pollock SH (1998) Selenium-based antihypertensives: rationale and potential. Drugs 56:959–964
Article
CAS
PubMed
Google Scholar
May SW (2002) Selenium-based pharmacological agents: an update. Expert Opin Investig Drugs 11:1261–1269
Article
CAS
PubMed
Google Scholar
Blackstone E (2005) H2S Induces a suspended animation-like state in mice. Science 308:518–518
Article
CAS
PubMed
Google Scholar
Iwata A, Morrison ML, Blackwood JE, Roth MB (2015) Selenide targets to reperfusing tissue and protects it from injury. Crit Care Med 43:1361–1367
Article
CAS
PubMed
Google Scholar
Szabo C, Ransy C, Módis K et al (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171:2099–2122
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmann C, Nussbaum B, Calzia E et al (2017) Gaseous mediators and mitochondrial function: the future of pharmacologically induced suspended animation? Front Physiol 8:691
Article
PubMed
PubMed Central
Google Scholar
Samra K, Singer M, Dyson A (2019) Hydrogen selenide as the 4th gasotransmitter: a metabolic modulator with potential therapeutic utility in acute/critical illness states. Intensive Care Med Exp 7:000883
Google Scholar
Dyson A, Dal-Pizzol F, Sabbatini G et al (2017) Ammonium tetrathiomolybdate following ischemia/reperfusion injury: chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models. PLOS Med 14:e1002310
Article
PubMed
PubMed Central
CAS
Google Scholar
Durham T, Zander D, Stomeo N et al (2019) Chemistry, pharmacology, and cellular uptake mechanisms of thiometallate sulfide donors. Br J Pharmacol. https://doi.org/10.1111/bph.14670 [Epub ahead of print]
Parnham MJ, Sies H (2013) The early research and development of ebselen. Biochem Pharmacol 86:1248–1253
Article
CAS
PubMed
Google Scholar
Takenori Y, Keiji S, Kintomo T et al (1998) Ebselen in acute ischemic stroke. Stroke 29:12–17
Article
Google Scholar
Ogawa A, Yoshimoto T, Kikuchi H et al (1999) Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis 9:112–118
Article
CAS
PubMed
Google Scholar
Noguchi N (2016) Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases. Arch Biochem Biophys 595:109–112
Article
CAS
PubMed
Google Scholar
Kuklinski B, Buchner M, Schweder R, Nagel R (1991) Acute pancreatitis--a free radical disease. Decrease in fatality with sodium selenite (Na2SeO3) therapy. Z Gesamte Inn Med 46:145–149
CAS
PubMed
Google Scholar
Lindner D, Lindner J, Baumann G et al (2004) Untersuchung zur antioxidativen Therapie mit Natriumselenit bei akuter Pankreatitis: Eine prospektive, randomisierte Blindstudie. Med Klin 99:708–712
Article
Google Scholar
Schmidt T, Pargger H, Seeberger E et al (2018) Effect of high-dose sodium selenite in cardiac surgery patients: a randomized controlled bi-center trial. Clin Nutr 37:1172–1180
Article
CAS
PubMed
Google Scholar
Zimmermann T, Albrecht S, Kühne H et al (1997) Selenium administration in patients with sepsis syndrome. A prospective randomized study. Med Klin 92:3–4
Article
Google Scholar
Angstwurm MW, Schottdorf J, Schopohl J, Gaertner R (1999) Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit Care Med 27:1807–1813
Article
CAS
PubMed
Google Scholar
Mishra V, Baines M, Elizabeth Perry S et al (2007) Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr 26:41–50
Article
CAS
PubMed
Google Scholar
Angstwurm MWA, Engelmann L, Zimmermann T et al (2007) Selenium in intensive care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med 35:118–126
Article
CAS
PubMed
Google Scholar
Forceville X, Laviolle B, Annane D et al (2007) Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care 11:R73
Article
PubMed
PubMed Central
Google Scholar
González CM (2009) Efecto antiinflamatorio del selenio en pacientes sépticos. Rev Asoc Mex Med Crítica Ter Intensiva 23:199–205
Google Scholar
Andrews PJD, Avenell A, Noble DW et al (2011) Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ 342:d1542
Article
PubMed
CAS
Google Scholar
Manzanares W, Biestro A, Torre MH et al (2011) High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive Care Med 37:1120–1127
Article
CAS
PubMed
Google Scholar
Valenta J, Brodska H, Drabek T et al (2011) High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intensive Care Med 37:808–815
Article
CAS
PubMed
Google Scholar
Janka V, Ladislav K, Jozef F, Ladislav V (2013) Restoration of antioxidant enzymes in the therapeutic use of selenium in septic patients. Wien Klin Wochenschr 125:316–325
Article
CAS
PubMed
Google Scholar
Woth G, Nagy B, Mérei Á et al (2014) The effect of Na-selenite treatment on the oxidative stress–antioxidants balance of multiple organ failure. J Crit Care 29:883.e7–883.e11
Article
CAS
Google Scholar
Chelkeba L, Ahmadi A, Abdollahi M et al (2015) The effect of parenteral selenium on outcomes of mechanically ventilated patients following sepsis: a prospective randomized clinical trial. Ann Intensive Care 5:29
Article
PubMed
PubMed Central
CAS
Google Scholar
Bloos F, Trips E, Nierhaus A et al (2016) Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med 176:1266–1276
Article
PubMed
Google Scholar
Chelkeba L, Ahmadi A, Abdollahi M et al (2017) The effect of high-dose parenteral sodium selenite in critically ill patients following sepsis: a clinical and mechanistic study. Indian J Crit Care Med 21:287–293
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalili H, Ahl R, Cao Y et al (2017) Early selenium treatment for traumatic brain injury: does it improve survival and functional outcome? Injury 48:1922–1926
Article
PubMed
Google Scholar
Moghaddam OM, Lahiji MN, Hassani V, Mozari S (2017) Early administration of selenium in patients with acute traumatic brain injury: a randomized double-blinded controlled trial. Indian Soc Crit Care Med 21:75–79
Article
CAS
Google Scholar
Zhao Y, Yang M, Mao Z et al (2019) The clinical outcomes of selenium supplementation on critically ill patients: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 98:e15473
Article
CAS
Google Scholar
Sun X, Wang W, Dai J et al (2017) A long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep 7:3541
Article
PubMed
PubMed Central
CAS
Google Scholar
Rose P, Dymock BW, Moore PK (2015) GYY4137, a novel water-soluble, H2S-releasing molecule. In: Methods in Enzymology. Elsevier, pp 143–167
Huang CW, Feng W, Peh MT et al (2016) A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacol Res 113:533–546
Article
CAS
PubMed
Google Scholar
Powell CR, Dillon KM, Matson JB (2018) A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol 149:110–123
Article
CAS
PubMed
Google Scholar
Wallace JL, Wang R (2015) Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14:329–345
Article
CAS
PubMed
Google Scholar