Neveu H, Kleinknecht D, Brivet F, Loirat P, Landais P: Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. The French Study Group on Acute Renal Failure. Nephrol Dial Transplant 1996, 11: 293–299. 10.1093/oxfordjournals.ndt.a027256
Article
CAS
PubMed
Google Scholar
Oppert M, Engel C, Brunkhorst FM, Bogatsch H, Reinhart K, Frei U, Eckardt KU, Loeffler M, John S, German Competence Network Sepsis (Sepnet): Acute renal failure in patients with severe sepsis and septic shock—a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant 2008, 23: 904–909.
Article
PubMed
Google Scholar
Palevsky PM, Zhang JH, O'Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P, VA/NIH Acute Renal Failure Trial Network: Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 2008, 359: 7–20.
Article
CAS
PubMed
Google Scholar
Molitoris BA, Sutton TA: Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 2004, 66: 496–499. 10.1111/j.1523-1755.2004.761_5.x
Article
PubMed
Google Scholar
Johannes T, Mik EG, Ince C: Non-resuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat. Shock 2009, 31: 97–103. 10.1097/SHK.0b013e31817c02a5
Article
PubMed
Google Scholar
Linas SL, Whittenburg D, Repine JE: Role of neutrophil derived oxidants and elastase in lipopolysaccharide-mediated renal injury. Kidney Int 1991, 39: 618–623. 10.1038/ki.1991.73
Article
CAS
PubMed
Google Scholar
Schrier RW, Wang W: Acute renal failure and sepsis. N Engl J Med 2004, 351: 159–169. 10.1056/NEJMra032401
Article
CAS
PubMed
Google Scholar
Fourrier F: Recombinant human activated protein C in the treatment of severe sepsis: an evidence-based review. Crit Care Med 2004, 32: S534-S541. 10.1097/01.CCM.0000145944.64532.53
Article
CAS
PubMed
Google Scholar
Bernard GR: Drotrecogin alfa (activated) (recombinant human activated protein C) for the treatment of severe sepsis. Crit Care Med 2003, 31: S85-S93. 10.1097/00003246-200301001-00012
Article
CAS
PubMed
Google Scholar
Esmon CT: Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit Care Med 2001, 29: S48-S51.
Article
CAS
PubMed
Google Scholar
Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr, Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group: Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001, 344: 699–709. 10.1056/NEJM200103083441001
Article
CAS
PubMed
Google Scholar
Favory R, Lancel S, Marechal X, Tissier S, Neviere R: Cardiovascular protective role for activated protein C during endotoxemia in rats. Int Care Med 2006, 32: 899–905. 10.1007/s00134-006-0166-x
Article
CAS
Google Scholar
Grinnell BW, Joyce D: Recombinant human activated protein C: a system modulator of vascular function for treatment of severe sepsis. Crit Care Med 2001, 29: S53-S60.
Article
CAS
PubMed
Google Scholar
Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Fertmann J, Schildberg FW, Menger MD: Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 2004, 32: 1011–1017. 10.1097/01.CCM.0000120058.88975.42
Article
PubMed
Google Scholar
Taylor FB Jr, Chang A, Esmon CT, D'Angelo A, Vigano-D'Angelo S, Blick KE: Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 1987, 79: 918–925. 10.1172/JCI112902
Article
CAS
PubMed Central
PubMed
Google Scholar
Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW: Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physiol Renal Physiol 2007, 293: F245-F254. 10.1152/ajprenal.00477.2006
Article
CAS
PubMed
Google Scholar
Gupta A, Berg DT, Gerlitz B, Sharma GR, Syed S, Richardson MA, Sandusky G, Heuer JG, Galbreath EJ, Grinnell BW: Role of protein C in renal dysfunction after polymicrobial sepsis. J Am Soc Nephrol 2007, 18: 860–867. 10.1681/ASN.2006101167
Article
CAS
PubMed
Google Scholar
Gupta A, Gerlitz B, Richardson MA, Bull C, Berg DT, Syed S, Galbreath EJ, Swanson BA, Jones BE, Grinnell BW: Distinct functions of activated protein C differentially attenuate acute kidney injury. J Am Soc Nephrol 2009, 20: 267–277. 10.1681/ASN.2008030294
Article
CAS
PubMed Central
PubMed
Google Scholar
Gupta A, Williams MD, Macias WL, Molitoris BA, Grinnell BW: Activated protein C and acute kidney injury: selective targeting of PAR-1. Curr Drug Targets 2009, 10: 1212–1226. 10.2174/138945009789753291
Article
CAS
PubMed
Google Scholar
Mizutani A, Okajima K, Uchiba M, Noguchi T: Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood 2000, 95: 3781–3787.
CAS
PubMed
Google Scholar
Martí-Carvajal AJ, Solà I, Gluud C, Lathyris D, Cardona AF: Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev 2012, 12: 12.
Google Scholar
Johannes T, Mik EG, Ince C: Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney. J Appl Physiol 2006, 100: 1301–1310.
Article
PubMed
Google Scholar
Mik EG, Johannes T, Ince C: Monitoring of renal venous PO
2
and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique. Am J Physiol Renal Physiol 2008, 294: F676-F681. 10.1152/ajprenal.00569.2007
Article
CAS
PubMed
Google Scholar
Dunphy I, Vinogradov SA, Wilson DF: Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal Biochem 2002, 310: 191–198. 10.1016/S0003-2697(02)00384-6
Article
CAS
PubMed
Google Scholar
Klenzak J, Himmelfarb J: Sepsis and the kidney. Crit Care Clin 2005, 21: 211–222. 10.1016/j.ccc.2005.01.002
Article
CAS
PubMed
Google Scholar
Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW: Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001, 276: 11199–11203. 10.1074/jbc.C100017200
Article
CAS
PubMed
Google Scholar
Bezemer R, Faber DJ, Almac E, Kalkman J, Legrand M, Heger M, Ince C: Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms. Med Biol Eng Comput 2010, 48: 1233–1242. 10.1007/s11517-010-0698-7
Article
PubMed Central
PubMed
Google Scholar
Weinberg JR, Boyle P, Thomas K, Murphy K, Tooke JE, Guz A: Capillary blood cell velocity is reduced in fever without hypotension. Int J Microcirc Clin Exp 1991, 10: 13–19.
CAS
PubMed
Google Scholar
De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL: Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002, 166: 98–104. 10.1164/rccm.200109-016OC
Article
PubMed
Google Scholar
Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL: Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2004, 32: 1825–1831. 10.1097/01.CCM.0000138558.16257.3F
Article
PubMed
Google Scholar
Ince C, Sinaasappel M: Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 1999, 27: 1369–1377. 10.1097/00003246-199907000-00031
Article
CAS
PubMed
Google Scholar
Ince C: The microcirculation is the motor of sepsis. Crit Care 2005, 9: S13-S19. 10.1186/cc3753
Article
PubMed Central
PubMed
Google Scholar
Fisher CJ Jr, Yan SB: Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Crit Care Med 2000, 28: S49-S56. 10.1097/00003246-200009001-00011
Article
PubMed
Google Scholar
Legrand M, Mik EG, Johannes T, Payen D, Ince C: Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 2008, 14: 502–516.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA: Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 2003, 285: F191-F198.
Article
CAS
PubMed
Google Scholar
Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F, Goligorsky MS: Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol 2002, 282: F1150-F1155.
Article
CAS
PubMed
Google Scholar
Hörbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A, Sutton TA: Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 2007, 293: F688-F695. 10.1152/ajprenal.00452.2006
Article
PubMed
Google Scholar
Schnackenberg CG: Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol 2002, 282: R335-R342.
Article
CAS
PubMed
Google Scholar
Li C, Jackson RM: Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002, 282: C227-C241. 10.1152/ajpcell.00112.2001
Article
CAS
PubMed
Google Scholar
Jassem W, Fuggle SV, Rela M, Koo DD, Heaton ND: The role of mitochondria in ischemia/reperfusion injury. Transplantation 2002, 73: 493–499. 10.1097/00007890-200202270-00001
Article
CAS
PubMed
Google Scholar
Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC: Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 2007, 27: 912–925. 10.1128/MCB.01223-06
Article
CAS
PubMed Central
PubMed
Google Scholar
Coremans JM, Van Aken M, Naus DC, Van Velthuysen ML, Bruining HA, Puppels GJ: Pretransplantation assessment of renal viability with NADH fluorimetry. Kidney Int 2000, 57: 671–683. 10.1046/j.1523-1755.2000.00889.x
Article
CAS
PubMed
Google Scholar
Connett RJ, Honig CR, Gayeski TE, Brooks GA: Defining hypoxia: a systems view of VO
2
, glycolysis, energetics, and intracellular PO
2
. J Appl Physiol 1990, 68: 833–842.
CAS
PubMed
Google Scholar
Kwon O, Nelson WJ, Sibley R, Huie P, Scandling JD, Dafoe D, Alfrey E, Myers BD: Backleak, tight junctions, and cell-cell adhesion in postischemic injury to the renal allograft. J Clin Invest 1998,101(10):2054–2064. 10.1172/JCI772
Article
CAS
PubMed Central
PubMed
Google Scholar
Lewy JE, Windhager EE: Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol 1968,214(5):943–954.
CAS
PubMed
Google Scholar
Wargenau M, Bepperling F, Baron JF: The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 mL) in mild-to-severe renal impairment. Anesth Analg 2002,95(3):544–551.
PubMed
Google Scholar
Johannes T, Mik EG, Nohé B, Raat NJ, Unertl KE, Ince C: Influence of fluid resuscitation on renal microvascular PO
2
in a normotensive rat model of endotoxemia. Crit Care 2006,10(3):R88. 10.1186/cc4948
Article
PubMed Central
PubMed
Google Scholar