Cerebral cytoplasmatic redox state is primarily determined by mitochondrial oxidative metabolism [3–7]. It is conventionally described by the ratio between the cytoplasmatic levels of lactate and pyruvate and is expressed in the ratio between lactate and pyruvate, the LP ratio.
Lactate and pyruvate are water-soluble. However, due to monocarboxylate transporters (MCTs), they equilibrate rapidly across cellular membranes. MCTs are proton-linked membrane carriers involved in the transport of various monocarboxylates such as lactate, pyruvate, and ketone bodies [12–14, 18]. They are present in all tissues. Out of the total family of 14 members, three isoforms (MCT1, MCT2, MCT4) have been described in the brain [19]. The driving forces for the transport of the monocarboxylates are obtained from the concentration differences over the cellular membranes. The transport is consequently characterized as facilitated diffusion [20]. The MCTs appear to be very effective in transporting lactate and pyruvate. After induction of cerebral ischemia, the intracerebral microdialysis probe will detect an increase in the LP ratio instantaneously and if the circulation is rapidly restored, the LP ratio quickly returns to a normal or near-normal level [9]. Based on these conditions, the present experimental study was designed to explore whether the equilibration of lactate and pyruvate across the blood-brain barrier (BBB) was rapid enough to permit the LP ratio of the draining venous blood to be used as a surrogate marker for global cerebral redox state.
After induction of hemorrhagic shock, the intracerebral LP ratio rapidly increased to a very high level. The increase was due to a marked increase in lactate concentration simultaneously with a pronounced decrease in pyruvate (Table 2, Fig. 2). This metabolic pattern is characteristic of ischemia (i.e., a simultaneous decrease in tissue oxygenation supply and substrate/glucose) [8–10]. After re-infusion of blood, the increase in lactate and the LP ratio increased further while pyruvate concentration continued to decrease. Tissue biochemical analysis thus revealed an insufficient supply of oxygen as well as substrate during the induced hemorrhagic shock that continued after blood transfusion and normalization of MAP.
In the superior sagittal sinus, the LP ratio exhibited a parallel though less pronounced pattern (Table 2, Fig. 2). Like in the cerebral tissue, the microdialysis catheter in the sagittal sinus continued to reveal a markedly elevated LP ratio after re-infusion of blood and the pyruvate concentration decreased to a very low level. In the femoral artery, a modest increase in the LP ratio and a moderate increase in the pyruvate level were obtained during and after the induced hemorrhagic shock. During the whole experimental period, the LP ratio of the femoral arterial blood remained close to the upper reference level (≤30) of normal cerebral tissue [17]. The difference between the level of LP ratio in the superior sagittal sinus and femoral artery after induction of hemorrhagic shock was highly significant, and our null hypothesis was rejected. Accordingly, we conclude that the LP ratio monitored in cerebral venous blood reflected the pronounced global intracerebral redox shift and was not caused by affected energy metabolism in extracranial tissues.
As shown in Table 2 and Fig. 3, the lactate concentration in the superior sagittal sinus increased during and after the period of shock. However, as arterial lactate level also increased markedly, intravenous lactate monitoring alone cannot be used as a marker of compromised cerebral energy metabolism.
PbtO2 and intracerebral glucose
PaO2 and b-glucose levels were kept relatively constant during the experimental period (Table 1). In spite of this fact, PbtO2 and intracerebral glucose decreased to very low levels during the induced hypotensive shock and remained very low after re-infusion of blood (Table 1, Fig. 1). This pattern is compatible with that observed during cerebral ischemia and corroborates the intracerebral microdialysis findings (Table 2). Accordingly, although MAP returned to close to the initial level after blood re-infusion (Table 1), cerebral perfusion was obviously not sufficient for restoring energy metabolism. The finding is probably explained by the fact that a progressive increase in ICP caused a decrease of CPP to a low level (40 mmHg; Table 1). The reason for the progressive increase in ICP is probably because of a global postischemic cytotoxic edema and leakage of the blood-brain barrier. Due to insufficient perfusion, arterial blood glucose was virtually completely extracted which resulted in a very low glucose level in the sagittal sinus (Table 2).
Glutamate and glycerol
During clinical intracerebral microdialysis use, an increase in glutamate concentration is generally interpreted as insufficient astrocytic uptake of released glutamate due to energy failure [21, 22]. In the present study, intracerebral glutamate increased markedly during the hypotensive shock period and did not return to normal level after blood re-infusion (Table 2). Thus, the observed changes in intracerebral glutamate are in accordance with the interpretation above: hypotensive shock caused cerebral ischemia and energy failure that did not recover after blood transfusion.
The normal blood-brain barrier is not permeable to glutamate [21]. Under normal conditions, interstitial cerebral concentration is approximately 2 μmol/L while blood concentration is 100–200 μmol/L. Accordingly, glutamate level obtained in cerebral venous blood does not reflect the intracerebral level. In the present study, the high concentration of glutamate obtained before the start of the experiment (100–200 μmol/L; Table 2) documents that the microdialysis catheter was actually positioned in the superior sagittal sinus in each experimental animals.
Intracerebral glycerol measured by microdialysis is conventionally used as a marker of degradation of cellular membranes into free fatty acids and glycerol [23, 24]. In the present experimental situation, intracerebral glycerol increased to a very high level during hypotensive shock and remained at this high level after transfusion (Table 2). The finding supports the interpretation that induced hemorrhagic shock to MAP 30 mmHg for 90 min caused cerebral energy failure and decomposition of cellular elements. However, increase in glycerol in cerebral venous blood (Table 2) does not necessarily result from degradation of cerebral cellular elements. The intact BBB has a very low permeability for glycerol [25]. In many extracerebral tissues, triglycerides are important cellular components. During stress and increased sympathetic tonus, triglycerides are degraded, which is reflected in fat tissue and in the blood as an increase of free fatty acids and glycerol [26]. Accordingly, an increase in glycerol concentration was in the present experimental situation also obtained in the femoral arterial blood (Table 2).
Clinical relevance of the experimental model
The study indicates that it is possible to evaluate global cerebral energy state by simultaneous monitoring of the redox state (LP ratio) in a cerebral vein. Under clinical conditions, this could be performed by placing the venous microdialysis catheter in the internal jugular vein close to the jugular bulb. In this way, it might be possible to continuously evaluate cerebral energy state bedside without inserting an intracerebral probe. This technique would be valuable in various serious conditions in need of critical care.
After cardiac standstill and resuscitation, the possibilities of evaluating cerebral damage and prognosis are still limited [27–30]. In these patients, a bedside continuous technique might also be used to monitor the effects of various therapies (e.g., hypothermia). For this purpose, intracerebral microdialysis has been used in a few selected cases [31] but it is unlikely that this invasive technique will be used in clinical routine. In patients subjected to open-heart surgery with or without cardiopulmonary bypass, minor cerebral complications appear to be frequent [32–36]. In these patients, analysis of lactate concentration from a microdialysis catheter positioned in a central vein has been proposed [37]. Although this technique was shown to give reliable information regarding global venous lactate level, it will not give specific information regarding cerebral energy metabolism. In patients with hepatic failure (HF) leading to cerebral symptoms and coma, intracerebral microdialysis has shown that an increase in tissue LP ratio is correlated to increases in tissue glutamine and hypoxanthine [38, 39] and energy failure appears to be an important pathogenetic component of both acute and chronic HF and a potential target for therapy [40].
The technique of evaluating global cerebral energy/redox state from the LP ratio obtained from a microdialysis catheter positioned in the internal jugular vein might give important information in a multitude of severe clinical conditions when direct measurements of tissue biochemistry is difficult or impossible. However, it should be recalled that evaluation of the LP ratio in the draining vein will not give quantitative, correct information regarding cerebral extracellular LP ratio (Table 2). This is of limited importance. Under clinical routine conditions, an upper normal level for the LP ratio is utilized (usually 30 or 40) and the exact level of the LP ratio is often of secondary importance [11, 41]. During intracerebral microdialysis, the LP ratio and the concentration of pyruvate have also been used to differentiate between ischemia and mitochondrial dysfunction [8, 10, 11]. This kind of detailed analysis and interpretation may not be possible when the LP ratio is monitored in cerebral venous blood.
During neurocritical care, the cerebral interstitial levels of glutamate and glycerol are used as indicators of insufficient energy production and cellular degradation. However, if the microdialysis catheter is positioned in cerebral venous blood, these interpretations are not valid for reasons given above.
Limitations
In experimental hemorrhagic shock, it has been described that, in contrast to the systemic macrocirculation, cerebral microcirculation may be remarkably well preserved [42]. Though the implications of this finding have been questioned, it is still an open question when and to what degree cerebral energy metabolism is compromised during hemorrhagic shock under clinical conditions [43]. In a recent experimental study utilizing multimodal monitoring with simultaneous imaging of cerebral hemodynamics and NADH signals, the authors demonstrated the temporal relationship between compromised microcirculation and compromised oxidative metabolism [44]. In this model of severe hemorrhagic shock, the oxidative metabolism was not restored after re-transfusion of the extracted blood volume. From that study and the present data, it appears that during severe hemorrhagic shock cerebral energy metabolism is severely compromised exhibiting a biochemical pattern typical of ischemia. Further, if hypotension is protracted and severe enough, cerebral energy metabolism may not be restored after transfusion. In the present experimental study, the biochemical pattern and the progressive increase of ICP indicated permanent cerebral lesions. The present experimental model was chosen because it creates reproducible severe global cerebral ischemia. However, the chosen hypotensive level of MAP around 35 mmHg is somewhat lower that the recommendations by the European Society for Intensive Care Medicine expert panel [45]. It is therefore important to stress that the present study cannot be used to determine the optimal level of MAP after hemorrhagic shock. The purpose of the present study was solely to establish a technique for “non-cranial” invasive monitoring of cerebral energy state. As shown in Table 2, there is a quantitative discrepancy in the LP ratio between the cerebral microdialysis probe and the one placed in the sinus. This suggests a “washout” effect. The degree of metabolic derangement in the present study was severe. In a clinical setting, e.g., after cardiac standstill, a less pronounced metabolic derangement will be expected. Accordingly, it might not be possible to detect minor metabolic derangements in the venous jugular bulb due to the washout effect. Future clinical studies are needed to determine this.