Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 288:373–376. https://doi.org/10.1038/288373a0
Article
CAS
PubMed
Google Scholar
Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327:524–526. https://doi.org/10.1038/327524a0
Article
CAS
PubMed
Google Scholar
Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5. https://doi.org/10.1172/jci112536
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith O (1998) Nobel Prize for NO research. Nat Med 4:1215. https://doi.org/10.1038/3182
Article
CAS
PubMed
Google Scholar
Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA (2005) Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 115:3128–3139. https://doi.org/10.1172/JCI20806
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci 96:657–662. https://doi.org/10.1073/pnas.96.2.657
Article
CAS
PubMed
Google Scholar
Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398. https://doi.org/10.1161/01.res.0000088351.58510.21
Article
CAS
PubMed
Google Scholar
Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45:18–31. https://doi.org/10.1016/j.freeradbiomed.2008.03.020
Article
CAS
PubMed
PubMed Central
Google Scholar
Radi R (2018) Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci 115:5839–5848. https://doi.org/10.1073/pnas.1804932115
Article
CAS
PubMed
Google Scholar
Loughran, P.A., Z. Lei, L. Xu, M. Deng, and T.R. Billiar, Chapter 22 - Nitric oxide in sepsis and hemorrhagic shock: beneficial or detrimental?, in Nitric oxide (Third Edition), L.J. Ignarro and B.A. Freeman, Editors. 2017, Academic Press. p. 289-300.
Cauwels A (2007) Nitric oxide in shock. Kidney Int 72:557–565. https://doi.org/10.1038/sj.ki.5002340
Article
CAS
PubMed
Google Scholar
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S (2014) Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care 29:500–511. https://doi.org/10.1016/j.jcrc.2014.03.028
Article
PubMed
Google Scholar
Tsuneyoshi I, Kanmura Y, Yoshimura N (1996) Nitric oxide as a mediator of reduced arterial responsiveness in septic patients. Crit Care Med 24:1083–1086. https://doi.org/10.1097/00003246-199606000-00033
Article
CAS
PubMed
Google Scholar
Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, Perez P, Meziani F (2010) Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med 36:2019–2029. https://doi.org/10.1007/s00134-010-2045-8
Article
CAS
PubMed
Google Scholar
Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies N, Cooper C, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 360:219–223
Article
CAS
Google Scholar
Dyson A, Bryan NS, Fernandez BO, Garcia-Saura MF, Saijo F, Mongardon N, Rodriguez J, Singer M, Feelisch M (2011) An integrated approach to assessing nitroso-redox balance in systemic inflammation. Free Radic Biol Med 51:1137–1145. https://doi.org/10.1016/j.freeradbiomed.2011.06.012
Article
CAS
PubMed
Google Scholar
Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial Nitric Oxide Synthase Targeting to Caveolae: SPECIFIC INTERACTIONS WITH CAVEOLIN ISOFORMS IN CARDIAC MYOCYTES AND ENDOTHELIAL CELLS. J Biol Chem 271:22810–22814. https://doi.org/10.1074/jbc.271.37.22810
Article
CAS
PubMed
Google Scholar
Kone BC, Kuncewicz T, Zhang W, Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Ren Physiol 285:F178–F190. https://doi.org/10.1152/ajprenal.00048.2003
Article
CAS
Google Scholar
Kirov MY, Evgenov OV, Evgenov NV, Egorina EM, Sovershaev MA, Sveinbjornsson B, Nedashkovsky EV, Bjertnaes LJ (2001) Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med 29:1860–1867
Article
CAS
Google Scholar
Andresen, M., A. Dougnac, O. Diaz, G. Hernandez, L. Castillo, G. Bugedo, M. Alvarez, and J. Dagnino (1998) Use of methylene blue in patients with refractory septic shock: impact on hemodynamics and gas exchange. Journal of Critical Care. 13:164-168.DOI: https://doi.org/10.1016/S0883-9441(98)90001-6
Article
CAS
Google Scholar
Bakker, J., R. Grover, A. McLuckie, L. Holzapfel, J. Andersson, R. Lodato, D. Watson, S. Grossman, J. Donaldson, J. Takala, and o.b.o.t.G.W.I.S.S.S. Group (2004) Administration of the nitric oxide synthase inhibitor NG-methyl-l-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: Results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002)*. Critical Care Medicine. 32:1-12.DOI: 10.1097/01.ccm.0000105118.66983.19
Article
CAS
Google Scholar
Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30. https://doi.org/10.1097/01.CCM.0000105581.01815.C6
Article
CAS
PubMed
Google Scholar
Yuyun MF, Ng LL, Ng GA (2018) Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahydrofolate in cardiovascular disease. Where are we with therapy? Microvasc Res 119:7–12. https://doi.org/10.1016/j.mvr.2018.03.012
Article
CAS
PubMed
Google Scholar
Werner ER, Werner-Felmayer G, Mayer B (1998) Tetrahydrobiopterin, cytokines, and nitric oxide synthesis. Proc Soc Exp Biol Med 219:171–182
Article
CAS
Google Scholar
Hye-Lim, K., amp, amp, and P. Young Shik (2010) Maintenance of cellular tetrahydrobiopterin homeostasis. BMB Rep 43:584-592
Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Price RN, Weinberg JB, Hyland K, Granger DL, Anstey NM (2015) Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria: association with disease severity, impaired microvascular function and increased endothelial activation. PLoS Pathog 11:e1004667. https://doi.org/10.1371/journal.ppat.1004667
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitzal F, Redl H, Strohmaier W, Werner ER, Bahrami S (2002) A 4-amino analogue of tetrahydrobiopterin attenuates endotoxin-induced hemodynamic alterations and organ injury in rats. Shock. 18:158–162
Article
Google Scholar
Bahrami S, Fitzal F, Peichl G, Gasser H, Fuerst W, Banerjee A, Strohmaier W, Redl H, Werner-Felmayer G, Werner ER (2000) Protection against endotoxemia in rats by a novel tetrahydrobiopterin analogue. Shock. 13:386–391
Article
CAS
Google Scholar
Dumbarton TC, Maxan A, Farah N, Sharawy N, Zhou J, Nantais J, Lehmann C (2017) Tetrahydrobiopterin improves microcirculation in experimental sepsis. Clin Hemorheol Microcirc 67:15–24. https://doi.org/10.3233/ch-160207
Article
CAS
PubMed
Google Scholar
He X, Su F, Velissaris D, Salgado DR, de Souza Barros D, Lorent S, Taccone FS, Vincent JL, De Backer D (2012) Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock. Crit Care Med 40:2833–2840. https://doi.org/10.1097/CCM.0b013e31825b88ba
Article
CAS
PubMed
Google Scholar
Tyml K, Li F, Wilson JX (2008) Septic impairment of capillary blood flow requires nicotinamide adenine dinucleotide phosphate oxidase but not nitric oxide synthase and is rapidly reversed by ascorbate through an endothelial nitric oxide synthase-dependent mechanism. Crit Care Med 36:2355–2362. https://doi.org/10.1097/CCM.0b013e31818024f6
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambden S, Tomlinson J, Piper S, Gordon AC, Leiper J (2018) Evidence for a protective role for the rs805305 single nucleotide polymorphism of dimethylarginine dimethylaminohydrolase 2 (DDAH2) in septic shock through the regulation of DDAH activity. Crit Care 22:336. https://doi.org/10.1186/s13054-018-2277-5
Article
PubMed
PubMed Central
Google Scholar
Tran, C.T.L., J.M. Leiper, and P. Vallance (2003) The DDAH/ADMA/NOS pathway. Atherosclerosis Supplements. 4:33-40.DOI: https://doi.org/10.1016/S1567-5688(03)00032-1
Article
CAS
Google Scholar
Tran CT, Fox MF, Vallance P, Leiper JM (2000) Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins. Genomics. 68:101–105. https://doi.org/10.1006/geno.2000.6262
Article
CAS
PubMed
Google Scholar
Leiper JM (1999) Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem.J. 343:209–214
Article
CAS
Google Scholar
Lucio Iannone LZ, Dubois O, Duluc L, Rhodes CJ, Wharton J, Wilkins MR, Leiper J, Wojciak-Stothard B (2014) miR-21/DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochem J 462:103–112. https://doi.org/10.1042/BJ20140486
Article
CAS
PubMed
Google Scholar
Anderssohn M, Maass LM, Diemert A, Luneburg N, Atzler D, Hecher K, Boger RH (2012) Severely decreased activity of placental dimethylarginine dimethylaminohydrolase in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 161:152–156. https://doi.org/10.1016/j.ejogrb.2011.12.032
Article
CAS
PubMed
Google Scholar
Lambden S, Kelly P, Ahmetaj-Shala B, Wang Z, Lee B, Nandi M, Torondel B, Delahaye M, Dowsett L, Piper S, Tomlinson J, Caplin B, Colman L, Boruc O, Slaviero A, Zhao L, Oliver E, Khadayate S, Singer M, Arrigoni F, Leiper J (2015) Dimethylarginine dimethylaminohydrolase 2 regulates nitric oxide synthesis and hemodynamics and determines outcome in polymicrobial sepsis. Arterioscler Thromb Vasc Biol 35:1382–1392. https://doi.org/10.1161/atvbaha.115.305278
Article
CAS
PubMed
Google Scholar
Wang Z, Lambden S, Taylor V, Sujkovic E, Nandi M, Tomlinson J, Dyson A, McDonald N, Caddick S, Singer M, Leiper J (2014) Pharmacological inhibition of DDAH1 improves survival, hemodynamics and organ function in experimental septic shock. Biochem J 460:309–316. https://doi.org/10.1042/BJ20131666
Article
CAS
PubMed
Google Scholar
Harbrecht BG (2006) Therapeutic use of nitric oxide scavengers in shock and sepsis. Curr Pharm Des 12:3543–3549. https://doi.org/10.2174/138161206778343000
Article
CAS
PubMed
Google Scholar
Privalle, C., T. Talarico, T. Keng, and J. DeAngelo (2000) Pyridoxalated hemoglobin polyoxyethylene: a nitric oxide scavenger with antioxidant activity for the treatment of nitric oxide-induced shock. Free Radical Biology and Medicine. 28:1507-1517.DOI: https://doi.org/10.1016/S0891-5849(00)00260-4
Article
CAS
Google Scholar
Bone HG, Schenarts PJ, Fischer SR, McGuire R, Traber LD, Traber DL (1998) Pyridoxalated hemoglobin polyoxyethylene conjugate reverses hyperdynamic circulation in septic sheep. J Appl Physiol 84:1991–1999. https://doi.org/10.1152/jappl.1998.84.6.1991
Article
CAS
PubMed
Google Scholar
Kinasewitz GT, Privalle CT, Imm A, Steingrub JS, Malcynski JT, Balk RA, DeAngelo J (2008) Multicenter, randomized, placebo-controlled study of the nitric oxide scavenger pyridoxalated hemoglobin polyoxyethylene in distributive shock*. Crit Care Med 36:1999–2007. https://doi.org/10.1097/CCM.0b013e31817bfe84
Article
CAS
PubMed
Google Scholar
Vincent J-L, Privalle CT, Singer M, Lorente JA, Boehm E, Meier-Hellmann A, Darius H, Ferrer R, Sirvent J-M, Marx G (2015) Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Crit Care Med 43:57–64
Article
CAS
Google Scholar
Bansal V, Ochoa JB (2003) Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 6:223–228. https://doi.org/10.1097/01.mco.0000058594.27240.12
Article
CAS
PubMed
Google Scholar
Ware LB, Magarik JA, Wickersham N, Cunningham G, Rice TW, Christman BW, Wheeler AP, Bernard GR, Summar ML (2013) Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit Care 17:R10. https://doi.org/10.1186/cc11934
Article
PubMed
PubMed Central
Google Scholar
Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34:906–911. https://doi.org/10.1111/j.1440-1681.2007.04638.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau T, Owen W, Yu YM, Noviski N, Lyons J, Zurakowski D, Tsay R, Ajami A, Young VR, Castillo L (2000) Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J Clin Invest 105:1217–1225. https://doi.org/10.1172/jci7199
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis JS, Anstey NM (2011) Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis. Crit Care Med 39:380–385. https://doi.org/10.1097/CCM.0b013e3181ffd9f7
Article
CAS
PubMed
Google Scholar
Luiking YC, Poeze M, Ramsay G, Deutz NE (2009) Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr 89:142–152. https://doi.org/10.3945/ajcn.2007.25765
Article
CAS
PubMed
Google Scholar
Kao CC, Bandi V, Guntupalli KK, Wu M, Castillo L, Jahoor F (2009) Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond) 117:23–30. https://doi.org/10.1042/cs20080444
Article
CAS
Google Scholar
Wijnands KA, Vink H, Briede JJ, van Faassen EE, Lamers WH, Buurman WA, Poeze M (2012) Citrulline a more suitable substrate than arginine to restore NO production and the microcirculation during endotoxemia. PLoS One 7:e37439. https://doi.org/10.1371/journal.pone.0037439
Article
CAS
PubMed
PubMed Central
Google Scholar
Poeze M, Bruins MJ, Kessels F, Luiking YC, Lamers WH, Deutz NE (2011) Effects of L-arginine pretreatment on nitric oxide metabolism and hepatosplanchnic perfusion during porcine endotoxemia. Am J Clin Nutr 93:1237–1247. https://doi.org/10.3945/ajcn.110.007237
Article
CAS
PubMed
PubMed Central
Google Scholar
Boger RH (2014) The pharmacodynamics of L-arginine. Altern Ther Health Med 20:48–54
PubMed
Google Scholar
Bower RH, Cerra FB, Bershadsky B, Licari JJ, Hoyt DB, Jensen GL, Van Buren CT, Rothkopf MM, Daly JM, Adelsberg BR (1995) Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 23:436–449
Article
CAS
Google Scholar
Beale RJ, Sherry T, Lei K, Campbell-Stephen L, McCook J, Smith J, Venetz W, Alteheld B, Stehle P, Schneider H (2008) Early enteral supplementation with key pharmaconutrients improves Sequential Organ Failure Assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med 36:131–144
Article
CAS
Google Scholar
Preiser JC, Berre PJ, Van Gossum A, Cynober L, Vray B, Carpentier Y, Vincent JL (2001) Metabolic effects of arginine addition to the enteral feeding of critically ill patients. JPEN J Parenter Enteral Nutr 25:182–187. https://doi.org/10.1177/0148607101025004182
Article
CAS
PubMed
Google Scholar
Kieft H, Roos AN, van Drunen JD, Bindels AJ, Bindels JG, Hofman Z (2005) Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med 31:524–532. https://doi.org/10.1007/s00134-005-2564-x
Article
PubMed
Google Scholar
Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G, Tognoni G (2003) Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med 29:834–840. https://doi.org/10.1007/s00134-003-1711-5
Article
PubMed
Google Scholar
Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.-D. Chiche, C. Coopersmith, D.P. De Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. Van der Poll, J.-L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine:1-74.DOI: https://doi.org/10.1007/s00134-017-4683-6
Article
Google Scholar
Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME (1990) Renal arginine synthesis: studies in vitro and in vivo. Am J Phys 259:E437–E442. https://doi.org/10.1152/ajpendo.1990.259.3.E437
Article
CAS
Google Scholar
van de Poll MC, Ligthart-Melis GC, Boelens PG, Deutz NE, van Leeuwen PA, Dejong CH (2007) Intestinal and hepatic metabolism of glutamine and citrulline in humans. J Physiol 581:819–827. https://doi.org/10.1113/jphysiol.2006.126029
Article
CAS
PubMed
PubMed Central
Google Scholar
Marini JC (2012) Arginine and ornithine are the main precursors for citrulline synthesis in mice. J Nutr 142:572–580. https://doi.org/10.3945/jn.111.153825
Article
CAS
PubMed
PubMed Central
Google Scholar
Galban C, Montejo JC, Mesejo A, Marco P, Celaya S, Sanchez-Segura JM, Farre M, Bryg DJ (2000) An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 28:643–648. https://doi.org/10.1097/00003246-200003000-00007
Article
CAS
PubMed
Google Scholar
Kao C, Hsu J, Bandi V, Jahoor F (2013) Alterations in glutamine metabolism and its conversion to citrulline in sepsis. Am J Physiol Endocrinol Metab 304:E1359–E1364. https://doi.org/10.1152/ajpendo.00628.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Cynober L, Moinard C, De Bandt JP (2010) The 2009 ESPEN Sir David Cuthbertson. Citrulline: a new major signaling molecule or just another player in the pharmaconutrition game? Clin Nutr 29:545–551. https://doi.org/10.1016/j.clnu.2010.07.006
Article
CAS
PubMed
Google Scholar
Wileman SM, Mann GE, Pearson JD, Baydoun AR (2003) Role of L-citrulline transport in nitric oxide synthesis in rat aortic smooth muscle cells activated with LPS and interferon-gamma. Br J Pharmacol 140:179–185. https://doi.org/10.1038/sj.bjp.0705407
Article
CAS
PubMed
PubMed Central
Google Scholar
Nussler AK, Billiar TR, Liu ZZ, Morris SM Jr (1994) Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem 269:1257–1261
CAS
PubMed
Google Scholar
Schmidlin A, Fischer S, Wiesinger H (2000) Transport of L-citrulline in neural cell cultures. Dev Neurosci 22:393–398. https://doi.org/10.1159/000017468
Article
CAS
PubMed
Google Scholar
Goodwin BL, Solomonson LP, Eichler DC (2004) Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J Biol Chem 279:18353–18360. https://doi.org/10.1074/jbc.M308160200
Article
CAS
PubMed
Google Scholar
Hilderman RH, Casey TE, Pojoga LH (2000) P(1),P(4)-Diadenosine 5’-tetraphosphate modulates l-arginine and l-citrulline uptake by bovine aortic endothelial cells. Arch Biochem Biophys 375:124–130. https://doi.org/10.1006/abbi.1999.1643
Article
CAS
PubMed
Google Scholar
Flam BR, Eichler DC, Solomonson LP (2007) Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide 17:115–121. https://doi.org/10.1016/j.niox.2007.07.001
Article
CAS
PubMed
Google Scholar
Kawahara K, Gotoh T, Oyadomari S, Kajizono M, Kuniyasu A, Ohsawa K, Imai Y, Kohsaka S, Nakayama H, Mori M (2001) Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. Brain Res Mol Brain Res 90:165–173
Article
CAS
Google Scholar
Prima V, Wang A, Molina G, Wang KK, Svetlov SI (2011) Inhibition of LPS toxicity by hepatic argininosuccinate synthase (ASS): novel roles for ASS in innate immune responses to bacterial infection. Int Immunopharmacol 11:1180–1188. https://doi.org/10.1016/j.intimp.2011.03.016
Article
CAS
PubMed
Google Scholar
Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M (2015) Arginine and citrulline and the immune response in sepsis. Nutrients. 7:1426–1463. https://doi.org/10.3390/nu7031426
Article
CAS
PubMed
PubMed Central
Google Scholar
Crenn, P., N. Neveux, S. Chevret, P. Jaffray, L. Cynober, J.-C. Melchior, and D. Annane (2014) Plasma l-citrulline concentrations and its relationship with inflammation at the onset of septic shock: a pilot study. Journal of Critical Care. 29:315.e1-315.e6.DOI: https://doi.org/10.1016/j.jcrc.2013.11.015
Article
Google Scholar
Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ (1996) Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Phys Heart Circ Phys 271:H1988–H1998. https://doi.org/10.1152/ajpheart.1996.271.5.H1988
Article
CAS
Google Scholar
Morris SM Jr, Kepka-Lenhart D, Chen L-C (1998) Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. American Journal of Physiology-Endocrinology and Metabolism 275:E740–E747. https://doi.org/10.1152/ajpendo.1998.275.5.E740
Article
Google Scholar
Yang Z, Ming X-F (2014) Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 5:533. https://doi.org/10.3389/fimmu.2014.00533
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowburn AS, Crosby A, Macias D, Branco C, Colaço RDDR, Southwood M, Toshner M, Crotty Alexander LE, Morrell NW, Chilvers ER, Johnson RS (2016) HIF2α–arginase axis is essential for the development of pulmonary hypertension. Proc Natl Acad Sci 113:8801–8806. https://doi.org/10.1073/pnas.1602978113
Article
CAS
PubMed
Google Scholar
Louis CA, Reichner JS, Henry WL Jr, Mastrofrancesco B, Gotoh T, Mori M, Albina JE (1998) Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am J Phys 274:R775–R782. https://doi.org/10.1152/ajpregu.1998.274.3.R775
Article
CAS
Google Scholar
Rath M, Müller I, Kropf P, Closs EI, Munder M (2014) Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 5:532–532. https://doi.org/10.3389/fimmu.2014.00532
Article
CAS
PubMed
PubMed Central
Google Scholar
Wijnands KAP, Hoeksema MA, Meesters DM, van den Akker NMS, Molin DGM, Briedé JJ, Ghosh M, Köhler SE, van Zandvoort MAMJ, de Winther MPJ, Buurman WA, Lamers WH, Poeze M (2014) Arginase-1 deficiency regulates arginine concentrations and NOS2-mediated NO production during endotoxemia. PLoS One 9:e86135–e86135. https://doi.org/10.1371/journal.pone.0086135
Article
CAS
PubMed
PubMed Central
Google Scholar
Darcy CJ, Woodberry T, Davis JS, Piera KA, McNeil YR, Chen Y, Yeo TW, Weinberg JB, Anstey NM (2014) Increased plasma arginase activity in human sepsis: association with increased circulating neutrophils. Clin Chem Lab Med 52:573–581. https://doi.org/10.1515/cclm-2013-0698
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102. https://doi.org/10.1084/jem.20070198
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez FM, Shiva S, Vincent PS, Ringwood LA, Hsu L-Y, Hon YY, Aletras AH, Cannon RO 3rd, Gladwin MT, Arai AE (2008) Nitrite anion provides potent cytoprotective and antiapoptotic effects as adjunctive therapy to reperfusion for acute myocardial infarction. Circulation. 117:2986–2994. https://doi.org/10.1161/CIRCULATIONAHA.107.748814
Article
CAS
PubMed
PubMed Central
Google Scholar
Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 360:1395–1396. https://doi.org/10.1016/s0140-6736(02)11393-6
Article
PubMed
Google Scholar
Boerma EC, Koopmans M, Konijn A, Kaiferova K, Bakker AJ, van Roon EN, Buter H, Bruins N, Egbers PH, Gerritsen RT, Koetsier PM, Kingma WP, Kuiper MA, Ince C (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 38:93–100. https://doi.org/10.1097/CCM.0b013e3181b02fc1
Article
CAS
PubMed
Google Scholar
Huellner MW, Schrepfer S, Weyand M, Weiner H, Wimplinger I, Eschenhagen T, Rau T (2008) Inhibition of aldehyde dehydrogenase type 2 attenuates vasodilatory action of nitroglycerin in human veins. FASEB J 22:2561–2568. https://doi.org/10.1096/fj.07-098830
Article
CAS
PubMed
Google Scholar
Janero DR, Bryan NS, Saijo F, Dhawan V, Schwalb DJ, Warren MC, Feelisch M (2004) Differential nitros(yl)ation of blood and tissue constituents during glyceryl trinitrate biotransformation in vivo. Proc Natl Acad Sci U S A 101:16958–16963. https://doi.org/10.1073/pnas.0406075101
Article
CAS
PubMed
PubMed Central
Google Scholar
Trzeciak S, Glaspey LJ, Dellinger RP, Durflinger P, Anderson K, Dezfulian C, Roberts BW, Chansky ME, Parrillo JE, Hollenberg SM (2014) Randomized controlled trial of inhaled nitric oxide for the treatment of microcirculatory dysfunction in patients with sepsis*. Crit Care Med 42:2482–2492. https://doi.org/10.1097/ccm.0000000000000549
Article
CAS
PubMed
Google Scholar