Baddeley AD, Flemming NC (1967) The efficiency of divers breathing oxy-helium. Ergonomics 10:311–319
Article
CAS
PubMed
Google Scholar
Harris PD, Barnes R (2008) The uses of helium and xenon in current clinical practice. Anaesthesia 63:284–293
Article
CAS
PubMed
Google Scholar
Berganza CJ, Zhang JH (2013) The role of helium gas in medicine. Med Gas Res 3:18
Article
PubMed
PubMed Central
Google Scholar
Smit KF, Weber NC, Hollmann MW, Preckel B (2015) Noble gases as cardioprotectants–translatability and mechanism. Br J Pharmacol 172:2062–2073
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber NC, Frässdorf J, Ratajczak C et al (2008) Xenon induces late cardiac preconditioning in vivo: a role for cyclooxygenase 2? Anesth Analg 107:1807–1813
Article
CAS
PubMed
Google Scholar
Preckel B, Weber NC, Sanders RD et al (2006) Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology 105:187–197
Article
PubMed
Google Scholar
Laitio R, Hynninen M, Arola O et al (2016) Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 315:1120–1128
Article
CAS
PubMed
Google Scholar
Arola O, Saraste A, Laitio R et al (2017) Inhaled xenon attenuates myocardial damage in comatose survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 70:2652–2660
Article
CAS
PubMed
Google Scholar
Hofland J, Ouattara A, Fellahi J-L et al (2017) Effect of xenon anesthesia compared to sevoflurane and total intravenous anesthesia for coronary artery bypass graft surgery on postoperative cardiac troponin release: an international, multicenter, phase 3, single-blinded, randomized noninferiority trial. Anesthesiology 127:918–933
Article
CAS
PubMed
Google Scholar
Oei GTML, Weber NC, Hollmann MW, Preckel B (2010) Cellular effects of helium in different organs. Anesthesiology 112:1503–1510
Article
CAS
PubMed
Google Scholar
Weber NC, Smit KF, Hollmann MW, Preckel B (2015) Targets involved in cardioprotection by the non-anaesthetic noble gas helium. Curr Drug Targets 16:786–792
Article
CAS
PubMed
Google Scholar
Aehling C, Weber NC, Zuurbier CJ et al (2017) Effects of combined helium pre/post-conditioning on the brain and heart in a rat resuscitation model. Acta Anaesthesiol Scand 62:63–74
Article
PubMed
CAS
Google Scholar
Liu Y, Xue F, Liu G et al (2011) Helium preconditioning attenuates hypoxia/ischemia-induced injury in the developing brain. Brain Res 1376:122–129
Article
CAS
PubMed
Google Scholar
Li Y, Zhang P, Liu Y et al (2016) Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model. Behav Brain Res 314:165–172
Article
CAS
PubMed
Google Scholar
De Deken J, Rex S, Monbaliu D et al (2016) The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit Care Med 44:e886–e896
Article
PubMed
Google Scholar
Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136
Article
CAS
PubMed
Google Scholar
Reimer KA, Murry CE, Yamasawa I et al (1986) Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Phys 251:H1306–H1315
CAS
Google Scholar
Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151
Article
CAS
PubMed
Google Scholar
Andrijchenko NN, Ermilov AY, Khriachtchev L et al (2015) Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules. J Phys Chem A 119:2517–2521
Article
CAS
PubMed
Google Scholar
Vinten-Johansen J, Yellon DM, Opie LH (2005) Postconditioning: a simple, clinically applicable procedure to improve revascularization in acute myocardial infarction. Circulation 112:2085–2088
Article
PubMed
Google Scholar
Przyklenk K, Whittaker P (2013) Genesis of remote conditioning: action at a distance -‘hypotheses non fingo’? J Cardiovasc Med 14:180–186
Article
Google Scholar
Müllenheim J, Ebel D, Bauer M et al (2003) Sevoflurane confers additional cardioprotection after ischemic late preconditioning in rabbits. Anesthesiology 99:624–631
Article
PubMed
Google Scholar
Obal D, Weber NC, Zacharowski K et al (2005) Role of protein kinase C-epsilon (PKCepsilon) in isoflurane-induced cardioprotection. Br J Anaesth 94:166–173
Article
CAS
PubMed
Google Scholar
Weber NC, Preckel B, Schlack W (2005) The effect of anaesthetics on the myocardium--new insights into myocardial protection. Eur J Anaesthesiol 22:647–657
Article
CAS
PubMed
Google Scholar
Ding Y-P, Zhang J-Y, Feng D-X et al (2017) Advances in molecular mechanism of cardioprotection induced by helium. Med Gas Res 7:124–132
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagel PS, Krolikowski JG, Shim YH et al (2007) Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg 105:562–569. https://doi.org/10.1213/01.ane.0000278083.31991.36
Article
CAS
PubMed
Google Scholar
Pagel PS, Krolikowski JG, Pratt PF Jr et al (2008) Inhibition of glycogen synthase kinase or the apoptotic protein p53 lowers the threshold of helium cardioprotection in vivo: the role of mitochondrial permeability transition. Anesth Analg 107:769–775
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagel PS, Krolikowski JG, Amour J et al (2009) Morphine reduces the threshold of helium preconditioning against myocardial infarction: the role of opioid receptors in rabbits. J Cardiothorac Vasc Anesth 23:619–624
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagel PS, Krolikowski JG, Pratt PF et al (2008) The mechanism of helium-induced preconditioning: a direct role for nitric oxide in rabbits. Anesth Analg 107:762–768
Article
CAS
PubMed
PubMed Central
Google Scholar
Hausenloy DJ, Ong S-B, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202
Article
CAS
PubMed
Google Scholar
Pagel PS, Krolikowski JG (2009) Transient metabolic alkalosis during early reperfusion abolishes helium preconditioning against myocardial infarction: restoration of cardioprotection by cyclosporin A in rabbits. Anesth Analg 108:1076–1082
Article
CAS
PubMed
Google Scholar
Pagel PS, Krolikowski JG, Pratt PF et al (2008) Reactive oxygen species and mitochondrial adenosine triphosphate-regulated potassium channels mediate helium-induced preconditioning against myocardial infarction in vivo. J Cardiothorac Vasc Anesth 22:554–559
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinen A, Huhn R, Smeele KMA et al (2008) Helium-induced preconditioning in young and old rat heart: impact of mitochondrial Ca(2+) -sensitive potassium channel activation. Anesthesiology 109:830–836
Article
CAS
PubMed
Google Scholar
Huhn R, Weber NC, Preckel B et al (2012) Age-related loss of cardiac preconditioning: impact of protein kinase A. Exp Gerontol 47:116–121
Article
CAS
PubMed
Google Scholar
Huhn R, Heinen A, Weber NC et al (2009) Helium-induced late preconditioning in the rat heart in vivo. Br J Anaesth 102:614–619
Article
CAS
PubMed
Google Scholar
Oei GTML, Aslami H, Kerindongo RP, et al (2015) Prolonged helium postconditioning protocols during early reperfusion do not induce cardioprotection in the rat heart in vivo: role of inflammatory cytokines. J Immunol Res 2015:2015:216798.
Article
CAS
Google Scholar
Oei GTML, Heger M, Van Golen RF et al (2014) Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways. Mol Med 20:516–526
Article
Google Scholar
Ferdinandy P, Hausenloy DJ, Heusch G et al (2014) Interaction of risk factors, comorbidities, and comedications with sschemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66:1142–1174
Article
CAS
PubMed
Google Scholar
Oei GTML, Huhn R, Heinen A et al (2012) Helium-induced cardioprotection of healthy and hypertensive rat myocardium in vivo. Eur J Pharmacol 684:125–131
Article
CAS
PubMed
Google Scholar
Huhn R, Heinen A, Weber NC et al (2009) Helium-induced early preconditioning and postconditioning are abolished in obese Zucker rats in vivo. J Pharmacol Exp Ther 329:600–607
Article
CAS
PubMed
Google Scholar
Trudell JR, Koblin DD, Eger EI (1998) A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg 87:411–418
CAS
PubMed
Google Scholar
Dickinson R, Franks NP (2010) Bench-to-bedside review: molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit Care 14:229
Article
PubMed
PubMed Central
Google Scholar
Tsutsumi YM, Kawaraguchi Y, Horikawa YT et al (2010) Role of caveolin-3 and glucose transporter-4 in isoflurane-induced delayed cardiac protection. Anesthesiology 112:1136–1145
Article
CAS
PubMed
Google Scholar
Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667
Article
CAS
PubMed
Google Scholar
Parton RG, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137–154
Article
CAS
PubMed
PubMed Central
Google Scholar
Chun M, Liyanage UK, Lisanti MP, Lodish HF (1994) Signal transduction of a G protein-coupled receptor in caveolae: colocalization of endothelin and its receptor with caveolin. Proc Natl Acad Sci U S A 91:11728–11732
Article
CAS
PubMed
PubMed Central
Google Scholar
Jawad N, Rizvi M, Gu J et al (2009) Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett 460:232–236
Article
CAS
PubMed
Google Scholar
Patel HH, Tsutsumi YM, Head BP et al (2007) Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 21:1565–1574
Article
CAS
PubMed
Google Scholar
Schilling JM, Roth DM, Patel HH (2015) Caveolins in cardioprotection - translatability and mechanisms. Br J Pharmacol 172:2114–2125
Article
CAS
PubMed
PubMed Central
Google Scholar
Schilling JM, Head BP, Patel HH (2018) Caveolins as regulators of stress adaptation. Mol Pharmacol 93:277–285
Article
CAS
PubMed
PubMed Central
Google Scholar
Sargiacomo M, Scherer PE, Tang Z et al (1995) Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U S A 92:9407–9411
Article
CAS
PubMed
PubMed Central
Google Scholar
Song KS, Scherer PE, Tang Z et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165
Article
CAS
PubMed
Google Scholar
Feron O, Balligand J-L (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69:788–797
Article
CAS
PubMed
Google Scholar
Ballard-Croft C, Locklar AC, Kristo G, Lasley RD (2006) Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. AJP: Heart Circ Physiol 291:H658–H667
CAS
Google Scholar
Krajewska WM, Masłowska I (2004) Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 9:195–220
CAS
PubMed
Google Scholar
Zuercher P, Springe D, Grandgirard D et al (2016) A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. BMC Neurol 16:43
Article
PubMed
PubMed Central
CAS
Google Scholar
Flick M, Albrecht M, Oei GTML et al (2016) Helium postconditioning regulates expression of caveolin-1 and -3 and induces RISK pathway activation after ischaemia/reperfusion in cardiac tissue of rats. Eur J Pharmacol 791:718–725
Article
CAS
PubMed
Google Scholar
Weber NC, Schilling JM, Warmbrunn MV et al (2019) Helium-induced changes in circulating caveolin in mice suggest a novel mechanism of cardiac protection. Int J Mol Sci 20:2640
Article
CAS
PubMed Central
Google Scholar
Smit KF, Konkel M, Kerindongo R et al (2018) Helium alters the cytoskeleton and decreases permeability in endothelial cells cultured in vitro through a pathway involving Caveolin-1. Sci Rep 8:4768
Article
PubMed
PubMed Central
CAS
Google Scholar
Sluijter JPG, Davidson SM, Boulanger CM et al (2018) Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position paper from the working group on cellular biology of the heart of the European Society of Cardiology. Cardiovasc Res 114:19–34
Article
CAS
PubMed
Google Scholar
Smit KF, Kerindongo RP, Böing A et al (2015) Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage. Exp Cell Res 337:37–43
Article
CAS
PubMed
Google Scholar
Smit KF, Oei GTML, Konkel M et al (2019) Plasma from volunteers breathing helium reduces hypoxia-induced cell damage in human endothelial cells—mechanisms of remote protection against hypoxia by helium. Cardiovasc Drugs Ther 33:297–306
Article
PubMed
PubMed Central
Google Scholar
Cheng JPX, Nichols BJ (2016) Caveolae: one function or many? Trends Cell Biol 26:177–189
Article
CAS
PubMed
Google Scholar
Parton RG, Tillu VA, Collins BM (2018) Caveolae. Curr Biol 28:R402–R405
Article
CAS
PubMed
Google Scholar
Braun S, Plitzko G, Bicknell L et al (2014) Pretreatment with helium does not attenuate liver injury after warm ischemia-reperfusion. Shock 41:413–419
Article
CAS
PubMed
Google Scholar
Zhang R, Zhang L, Manaenko A et al (2014) Helium preconditioning protects mouse liver against ischemia and reperfusion injury through PI3k-Akt pathway. J Hepatol 61:1048–1055
Article
CAS
PubMed
Google Scholar
Rizvi M, Jawad N, Li Y et al (2010) Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp Biol Med (Maywood) 235:886–891
Article
CAS
Google Scholar
Carmona M, Lopes RI, Borba M et al (2008) Comparison of the effects of carbon dioxide and helium pneumoperitoneum on renal function. J Endourol 22:1077–1082
Article
PubMed
Google Scholar
David HN, Haelewyn B, Chazalviel L et al (2009) Post-ischemic helium provides neuroprotection in rats subjected to middle cerebral artery occlusion-induced ischemia by producing hypothermia. J Cereb Blood Flow Metab 29:1159–1165
Article
PubMed
Google Scholar
Haelewyn B, David HN, Blatteau J-E et al (2016) Modulation by the noble gas helium of tissue plasminogen activator: Effects in a rat model of thromboembolic stroke. Crit Care Med 44:e383–e389
Article
CAS
PubMed
Google Scholar
Pan Y, Zhang H, VanDeripe DR et al (2007) Heliox and oxygen reduce infarct volume in a rat model of focal ischemia. Exp Neurol 205:587–590
Article
CAS
PubMed
Google Scholar
Pan Y, Zhang H, Acharya AB et al (2011) The effect of heliox treatment in a rat model of focal transient cerebral ischemia. Neurosci Lett 497:144–147
Article
CAS
PubMed
Google Scholar
Li Y, Liu K, Kang ZM et al (2016) Helium preconditioning protects against neonatal hypoxia–ischemia via nitric oxide mediated up-regulation of antioxidases in a rat model. Behav Brain Res 300:31–37
Article
CAS
PubMed
Google Scholar
Zhang R, Yu Y, Manaenko A et al (2019) Effect of helium preconditioning on neurological decompression sickness in rats. J Appl Physiol 126:934–940
Article
CAS
PubMed
Google Scholar
Zhuang L, Yang T, Zhao H et al (2012) The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med 40:1724–1730
Article
CAS
PubMed
Google Scholar
Koziakova M, Harris K, Edge CJ et al (2019) Noble gas neuroprotection: xenon and argon protect against hypoxic. Br J Anaesth 123:601–609
Article
CAS
PubMed
PubMed Central
Google Scholar
Smit KF, Brevoord D, Hert S et al (2016) Effect of helium pre- or postconditioning on signal transduction kinases in patients undergoing coronary artery bypass graft surgery. J Transl Med 14:294
Article
PubMed
PubMed Central
CAS
Google Scholar
Smit KF, Oei GTML, Brevoord D et al (2013) Helium induces preconditioning in human endothelium in vivo. Anesthesiology 118:95–104
Article
PubMed
Google Scholar
Lucchinetti E, Wacker J, Maurer C et al (2009) Helium breathing provides modest antiinflammatory, but no endothelial protection against ischemia-reperfusion injury in humans in vivo. Anesth Analg 109:101–108
Article
CAS
PubMed
Google Scholar
Oei GT, Smit KF, vander Vondervoort D, et al (2012) Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo. J Transl Med 10:201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bathke P, Gallagher T (2009) Respiratory problems in accident and emergency--the role of helium-oxygen mixtures. Anaesthesia 64:576
Article
CAS
PubMed
Google Scholar
Chiappa GR, Queiroga F, Meda E et al (2009) Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:1004–1010
Article
PubMed
Google Scholar
Laveneziana P, Valli G, Onorati P et al (2011) Effect of heliox on heart rate kinetics and dynamic hyperinflation during high-intensity exercise in COPD. Eur J Appl Physiol 111:225–234
Article
PubMed
Google Scholar
Diehl J-L, Peigne V, Guérot E et al (2011) Helium in the adult critical care setting. Ann Intensive Care 1:24
Article
PubMed
PubMed Central
CAS
Google Scholar
El-Khatib MF, Jamaleddine G, Kanj N et al (2014) Effect of heliox- and air-driven nebulized bronchodilator therapy on lung function in patients with asthma. Lung 192:377–383
Article
CAS
PubMed
Google Scholar
Abroug F, Ouanes-Besbes L, Hammouda Z et al (2017) Noninvasive ventilation with helium– oxygen mixture in hypercapnic COPD exacerbation: aggregate meta-analysis of randomized controlled trials. Ann Intensive Care 7:59. https://doi.org/10.1186/s13613-017-0273-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Jolliet P, Ouanes-Besbes L, Abroug F et al (2017) A multicenter randomized trial assessing the efficacy of helium/oxygen in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 195:871–880
Article
CAS
PubMed
Google Scholar
Ferrer M, Torres A (2017) Noninvasive ventilation with helium/oxygen in chronic obstructive pulmonary disease exacerbations. When physiologic improvement does not translate into clinical benefit. Am J Respir Crit Care Med 195:843–844
Article
PubMed
Google Scholar
Clement K, Thurman T, Holt S et al (2015) Validation of volume delivery with the use of heliox in mechanical ventilation. J Pediatr Intensive Care 02:39–44
Article
Google Scholar
Hurford WE, Cheifetz IM (2007) Respiratory controversies in the critical care setting. Should heliox be used for mechanically ventilated patients? Respir Care 52:582–591
PubMed
Google Scholar
Brevoord D, Beurskens CJP, van den Bergh WM et al (2016) Helium ventilation for treatment of post-cardiac arrest syndrome: a safety and feasibility study. Resuscitation 107:145–149
Article
PubMed
Google Scholar
Beurskens CJ, Brevoord D, Lagrand WK et al (2014) Heliox improves carbon dioxide removal during lung protective mechanical ventilation. Crit Care Res Pract 2014:954814
PubMed
PubMed Central
Google Scholar
Beurskens CJ, Aslami H, de Beer FM et al (2013) Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury. PLoS One 8:e78159
Article
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz S, Daglioglu K, Yildizdas D et al (2013) The effectiveness of heliox in acute respiratory distress syndrome. Ann Thorac Med 8:46
Article
PubMed
PubMed Central
Google Scholar
Beurskens CJP, Wösten-van Asperen RM, Preckel B, Juffermans NP (2015) The potential of heliox as a therapy for acute respiratory distress syndrome in adults and children: a descriptive review. Respiration 89:166–174
Article
CAS
PubMed
Google Scholar
Leatherman JW, Romero RS, Shapiro RS (2018) Lack of benefit of heliox during mechanical ventilation of subjects with severe air-flow obstruction. Respir Care 63:375–379
Article
PubMed
Google Scholar