Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852
Article
CAS
Google Scholar
Schmaier AH (2016) The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 14:28–39
Article
CAS
Google Scholar
Nicola H (2017) The role of contact system in septic shock: the next target? An overview of the current evidence. J Intensive Care 5:31
Article
Google Scholar
Delano MJ, Ward PA (2016) The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274:330–353
Article
CAS
Google Scholar
van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG (2017) The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–420
Article
Google Scholar
Frick IM, Bjorck L, Herwald H (2007) The dual role of the contact system in bacterial infectious disease. Thromb Hemost 98:497-502
Cayla C, Todiras M, Iliescu R, Saul VV, Gross V, Pilz B, Chai G, Merino VF, Pesquero JB, Baltatu OC, Bader M (2007) Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J 21:1689–1698
Article
CAS
Google Scholar
Nasseri S, Gurusamy M, Jung B, Lee D, Khang G, Doods H, Wu D (2015) Kinin B1 receptor antagonist BI113823 reduces acute lung injury. Crit Care Med 43:e499–e507
Article
CAS
Google Scholar
Murugesan P, Jung B, Lee D, Khang G, Doods H, Wu D (2016) Kinin B1 receptor inhibition with BI113823 reduces inflammatory response, mitigates organ injury, and improves survival among rats with severe Sepsis. J Infect Dis 213:532–540
Article
CAS
Google Scholar
Whalley ET, Solomon JA, Modafferi DM, Bonham KA, Cheronis JC (1992) CP-0127, a novel potent bradykinin antagonist, increases survival in rat and rabbit models of endotoxin shock. Agents Actions Suppl 38(Pt 3):413–420
CAS
Google Scholar
Ridings PC, Blocher CR, Fisher BJ, Fowler AA 3rd, Sugerman HJ (1995) Beneficial effects of a bradykinin antagonist in a model of gram-negative sepsis. J Trauma 39:81–88 discussion 8-9
Article
CAS
Google Scholar
Ridings PC, Sugerman HJ, Blocher CR, Fisher BJ, Fowler AA (1995) Hemodynamic effects of bradykinin antagonism in porcine gram-negative sepsis. J Investig Surg 8:115–122
Article
CAS
Google Scholar
Feletou M, Jamonneau I, Germain M, Thurieau C, Fauchere JL, Villa P, Ghezzi P, Canet E (1996) Bradykinin B2 receptor involvement in rabbit and murine models of septic shock. J Cardiovasc Pharmacol 27:500–507
Article
CAS
Google Scholar
Barratt-Due A, Johansen HT, Sokolov A, Thorgersen EB, Hellerud BC, Reubsaet JL, Seip KF, Tonnessen TI, Lindstad JK, Pharo A, Castellheim A, Mollnes TE, Nielsen EW (2011) The role of bradykinin and the effect of the bradykinin receptor antagonist icatibant in porcine sepsis. Shock 36:517–523
Article
CAS
Google Scholar
Fein AM, Bernard GR, Criner GJ, Fletcher EC, Good JT, Knaus WA, Levy H, Matuschak GM, Shanies HM, Taylor RW, Rodell TC (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127)—results of a randomized, double-blind, placebo-controlled trial. Jama-Journal of the American Medical Association 277:482–487
Article
CAS
Google Scholar
Nordahl EA, Rydengard V, Morgelin M, Schmidtchen A (2005) Domain 5 of high molecular weight kininogen is antibacterial. J Biol Chem 280:34832–34839
Article
CAS
Google Scholar
Frick IM, Akesson P, Herwald H, Morgelin M, Malmsten M, Nagler DK, Bjorck L (2006) The contact system—a novel branch of innate immunity generating antibacterial peptides. EMBO J 25:5569–5578
Article
CAS
Google Scholar
Kaman WE, Wolterink AF, Bader M, Boele LC, van der Kleij D (2009) The bradykinin B2 receptor in the early immune response against Listeria infection. Med Microbiol Immunol 198:39–46
Article
CAS
Google Scholar
Achouiti A, Vogl T, Urban CF, Rohm M, Hommes TJ, van Zoelen MA, Florquin S, Roth J, van't Veer C, de Vos AF, van der Poll T (2012) Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog 8:e1002987
Article
CAS
Google Scholar
Stroo I, Zeerleder S, Ding C, Luken BM, Roelofs Jjth, de Boer OJ, Meijers JCM, Castellino FJ, van 't Veer C, van der Poll T (2017) Coagulation factor XI improves host defence during murine pneumonia-derived sepsis independent of factor XII activation. Thromb Haemost 117:1601-14
Ding C, van't Veer C, Jjth R, Shukla M, McCrae KR, Revenko AS, Crosby J, van der Poll T (2018) Limited role of kininogen in the host response during gram-negative pneumonia-derived sepsis. Am J Phys Lung Cell Mol Phys 314:L397–l405
Google Scholar
Nsa Allogho S, Gobeil F, Pheng LH, Nguyen-Le XK, Neugebauer W, Regoli D (1997) Antagonists for kinin B1 and B2 receptors in the mouse. Can J Physiol Pharmacol 75:558–562
Article
CAS
Google Scholar
Schulze-Topphoff U, Prat A, Prozorovski T, Siffrin V, Paterka M, Herz J, Bendix I, Ifergan I, Schadock I, Mori MA, Van Horssen J, Schroter F, Smorodchenko A, Han MH, Bader M, Steinman L, Aktas O, Zipp F (2009) Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat Med 15:788–793
Article
CAS
Google Scholar
Viana AF, Maciel IS, Dornelles FN, Figueiredo CP, Siqueira JM, Campos MM, Calixto JB (2010) Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide. J Neuroinflammation 7:98
Article
CAS
Google Scholar
Uzawa A, Mori M, Taniguchi J, Kuwabara S (2014) Modulation of the kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol 178:245–252
Article
CAS
Google Scholar
Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renne T, Kleinschnitz C (2009) Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema * expanded materials and methods. Stroke 40:285–293
Article
CAS
Google Scholar
Dutra RC, Leite DF, Bento AF, Manjavachi MN, Patricio ES, Figueiredo CP, Pesquero JB, Calixto JB (2011) The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS One 6:e27875
Article
CAS
Google Scholar
Marcon R, Claudino RF, Dutra RC, Bento AF, Schmidt EC, Bouzon ZL, Sordi R, Morais RL, Pesquero JB, Calixto JB (2013) Exacerbation of DSS-induced colitis in mice lacking kinin B(1) receptors through compensatory up-regulation of kinin B(2) receptors: the role of tight junctions and intestinal homeostasis. Br J Pharmacol 168:389–402
Article
CAS
Google Scholar
de Stoppelaar SF, van't Veer C, Claushuis TAM, Albersen BJA, Jjth R, van der Poll T (2014) Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice. Blood 124:3781–3790
Article
Google Scholar
Long AT, Kenne E, Jung R, Fuchs TA, Renne T (2016) Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 14:427–437
Article
CAS
Google Scholar
Qadri F, Bader M (2018) Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets 22:31–44
Article
CAS
Google Scholar
Paegelow I, Trzeczak S, Bockmann S, Vietinghoff G (2002) Migratory responses of polymorphonuclear leukocytes to kinin peptides. Pharmacology 66:153–161
Article
CAS
Google Scholar
Stuardo M, Gonzalez CB, Nualart F, Boric M, Corthorn J, Bhoola KD, Figueroa CD (2004) Stimulated human neutrophils form biologically active kinin peptides from high and low molecular weight kininogens. J Leukoc Biol 75:631–640
Article
CAS
Google Scholar
Sato E, Koyama S, Nomura H, Kubo K, Sekiguchi M (1996) Bradykinin stimulates alveolar macrophages to release neutrophil, monocyte, and eosinophil chemotactic activity. J Immunol 157:3122–3129
CAS
Google Scholar
Ehrenfeld P, Matus CE, Pavicic F, Toledo C, Nualart F, Gonzalez CB, Burgos RA, Bhoola KD, Figueroa CD (2009) Kinin B1 receptor activation turns on exocytosis of matrix metalloprotease-9 and myeloperoxidase in human neutrophils: involvement of mitogen-activated protein kinase family. J Leukoc Biol 86:1179–1189
Article
CAS
Google Scholar
Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. J Intern Med 277:277–293
Article
CAS
Google Scholar
Marshall JC, Deitch E, Moldawer LL, Opal S, Redl H, van der Poll T (2005) Preclinical models of shock and sepsis: what can they tell us? Shock 24(Suppl 1):1–6
Article
Google Scholar
Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15:581–614
Article
Google Scholar
Ni A, Yin H, Agata J, Yang Z, Chao L, Chao J (2003) Overexpression of kinin B1 receptors induces hypertensive response to des-Arg9-bradykinin and susceptibility to inflammation. J Biol Chem 278:219–225
Article
CAS
Google Scholar
Merino VF, Todiras M, Campos LA, Saul V, Popova E, Baltatu OC, Pesquero JB, Bader M (2008) Increased susceptibility to endotoxic shock in transgenic rats with endothelial overexpression of kinin B(1) receptors. J Mol Med (Berl) 86:791–798
Article
CAS
Google Scholar